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Abstract

We study the question of the existence of periodic solutions of Hamiltonian systems
of the form:

(*) 4 + Vq(t, q) = 0

3

where V = Va(t, qi - qj) with V(t, ) T periodic in t and singular in .c at { = 0.
<ij

Under additional technical hypotheses on V (of 3-body type), we prove the functional
corresponding to (*) has an unbounded sequence of critical points provided that the sin-
gularitv of V at 0 is strong enough. These critical points are classical T-periodic solutions
of (*). If the singularity at { = 0 is arbitrary, there still exists at least once generalized T-
peniodic solutions. Generalized solutions are necessary since collision orbits, i.e. solutions
which pass through the singularity, are possible. The proof of these results involves novel
topological arguments.
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Periodic solutions of Hamiltonian systems

of 3-body type

by Abbas Bahri and Paul H. Rabinowitz

§1. Introduction

The study of time periodic solutions of the n-body problem is a classical one. See e.g

[1]. Our goal in this paper is to present some new variational approaches of a global nature

to a class of problems of 3-body type. To be more precise, consider the system:

(1). n + av(q) = 0, 1 < i < 3

Hereqi ERt, >3andmi>0, 1<i<3, q=(ql,q2 ,q3 ), andV:F 3(R) --+R. Here

F 3(Re) is the configuration space

F 3 (R t ) = {(q 1,q 2 ,q 3) E (Re)3 I qi qj if i #}.

Since our arguments are valid for any choice of mi > 0, 1 < I < 3, for convenience we

take m i = 1, 1 < i < 3 and write (1) more simply as:

(HS) j + V'(q) = 0.

Concerning V, we assume

3

(2) V= V V(q 1-q 3 )
i,j =1

where for each i,j, the function Vij satisfies

(V) Vij(x) E C 2(Re\{0},R), Vr 04

(2) V,,(X) < 0,

(17.) Vj(q) and V7'(q) -+ 0 as I--* q o,

(V4) Vij(q) - -oo as q -- 0,-

(V5) For all M > 0, there is an R > 0 such that Iqj > R implies Vj'(q) . q > MVII(q),

(V,6) There exists Uii E C1(RI\{0},R) such that Uj(q) - oc as q - 0 and -V,j > :I 2
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Note that potentials like

3(3) V(q) = 7 0- 1q -

i¢j

where aij and O3 ij are positive and satisfy (V1 ) - (V5 ). Moreover (V6 ) is satisfied if /3ij 2

for all i,j. For the classical 3-body problem, we have ijj = 1, 1 < i : j < 3.

The significance of hypothesis (1/6) can be seen when (HS) is posed as a varia-

' problem. First we choose T > 6 and seek T- periodic solutions ot (HS). Lt

E = TVT' 2(R, (Re) 3 ), the Hilbert space of T-periodic maps from R into (Re)3 under the

norm:

Ilq = 112dt + [q] 2

where

[q] q(s)ds.

The functional corresponding to (HS) is

(4) I(q) = j T [1142 - V(q)] dt.

If V satisfies (VI) - (V6 ), then, as will be shown in §2, q E A where

A= {q E EIqi(t) 7Aqj(t) forall i# j and * E(0,T]}.

Critical points of I in A are then easily seen to be classicai, itions of (HS).

Our main result is:

Theorem 1. If V satisfies (V 1) - (V6 ), then for each T > 0, I possesses an unbounded

sequence of critical values.

As will be seen later in the proof of Theorem 1, no explicit use was made of the fact

that V is independent of t. Thus we also get the following result:

Theorem 1'. Suppose V = V(t, q) : R x F 3 (R) -+ R is T periodic in t and otherwise

satisfies (VI) - (V6). Then the functional

(5) 1 (i2- V(tq)) dt

3



has an unbounded sequence of critical value which axe T periodic solutions of

(6) + Vq(tq) = 0.

If (1 6 ) does not hold, it is possible that I(q) < co for q C E but qi(t) = qj(t) for

some 1 j and t E [0. T]. We refer to this possibility as a collision. When collisions are

possible, critical points of I need not be classical solutions of (HS) and a notion of a

generalized solution of (HS) is needed. Following a related situation in [2], we say q E E

is a generalized T-periodic solution of (KS) if:

(i) = {t E 0, T] qi(t) = qj(t) for some i j} has measure 0.

(ii) q E C2 on [0, T]\D and satisfies (HS),

(7) (ii) -foV(q(t))dt < oo and

(iv) 14(t)I 2 + V(q(t)) = constant fort E [0, T]\P

(i.e. energy is conserved on the set on which it is defined).

Theorem 1, together with some of the ingredients in its proof and ideas from [23 yields

Theorem 2. If V satisfies (VI) - (V 5 ), for each T > 0, (HS) possesses a generalized

T-periodic solution.

There is also an analogue of Theorem 2 for the case in which V = V(t, q) and is T-periodic

in t.

Our approach to (HS) is via the calculus of variations. A few recent papers [3-61 have

used variational methods to treat singular Hamiltonian systems but for potential energy

terms which have a milder singularity than (2). E.g. [3-6] study (HS) for V's having

a point singularity like V(q) = V(Iql) where W(s) = -s - 3. More generally they treat

V's having a compact set of singularities. They also have restrictions on the behavior of

V near the singular set like (V6 ). Under such hypotheses, the functional corresponding

to I satisfies some version of the Palais-Smale condition - (PS) for short - and this fact

plays an important role in the associated existence arguments. In work in progress, Coti-

Zelati is studying a class of time independent potentials of n body type under a symmctry

condition (V,(f) = lI§(f)). This symmetry and a clever observation allow him to work

in a restricted class of functions where (PS) holds. However, in the current setting.

under (U1/) - (Vs) the finctional defined by (2) and (4) does not satisfy (PS) even after
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eliminating a translational symmetry inherent in the form of (2). Roughly speaking, what

goes wrong with (PS) is that a sequence (qJ) C E with I(q j ) --+ c and I'(q j ) --+ 0 may
"4approach" the triple (qj, q2, "00") which is a solution of the two body problem associated

with (HS) by dropping all terms involving q3.

To briefly outline the remainder of this paper, the breakdown of (PS) will be studied

in a precise way in §2. Invariance properties of I and the behavior of level sets of I, in

particular of f = {q E E I I(q) < e} for small e will also be examined. A novel kind

of Morse Lemma for neighborhoods of infinity will be given in §3. This lemma combined

with the results of §2 gives (modulo translations) a priori bounds for critical points of I,

the bounds depending on the corresponding critical values. In §4. it will be shown h-t I

can be approximated by a nearly functional i with nondegenerate critical points (modulo

translations) and possessing other nice properties.

The proof of Theorem 1 will be carried out in §5 by means of an indirect argument in

which I is replaced by i. A key role in the proof is played by a notion of critical points at

infinity, corresponding to limit two body problems arising from the breakdown of (PS),

together with their unstable manifolds. As will be snown in §7-8, fi' can be retracted by

deformation to f' U )M U D' where DM is the union of all unstable manifolds of critical

points of I in _AI\Iq and D' a similar set for critical points of the limit 2-body problems

at infinity. This enables us to exploit the difference in topology as measured by rational

homology between A and its two body analogue. In §6 we prove Theorem 2. Lastly in

§9 under certain assumptions of nondegeneracy of critical points (up to translations), we

obtain Morse type inequalities for critical points (Theorem 3). One consequence of these

inequalities, which will be pursued elsewhere, is that they enable us to conclude that in

certain situations, e.g. for simple potentials where one has central configurations (satisfying

(16)) that the family of periodic solhtions we find is much larger than the known family of

solutions. Moreover, using these inequalities and ideas which can be found in Kiingenberg

[18 and Ekeland (19], under generic conditions one can establish the existence of either an

elliptic orbit or infinitely many hyperbolic orbits on a given energy surface (see A. Bahri, B.

M. D'Onofrio [20]). If we drop (V6), these inequalities do not hold per se. However under

additional assumptions on V, one can show there are at most finitely many collisions. This

fact can be used to prove an analogue of Theorem 3 when collisions can occur and likewise

leads to applications such as those just mentioned. These matters will also be pursued

elsewhere.

We are grateful to E. Fadell and S. Husseini for helpful comments on the proof of

Theorem 1 and likewise to J. Robbin concerning the results of §7.
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§2. Some analytic preliminaries

In this section, several of the properties of I will be studied, especially the breakdown
of the Palais-Smale condition. For simplicity here and in the sequel we assume the period

T = 1. To begin we will show that if q E E and I(q) < o, then q E A. More precisely, we

have:

Proposition 2.1. Suppose V satisfies (V,), (V2 ), (V4 ) and (V6 ). Then for any c > 0, there

exists & = 6(c) such that q E E and I(q) < c implies

inf [qi(t) - qj(t)[ > 6.
i~j,tE[O.1

Proof. Consider two distinct indices i j E {1, 2,3}. By (V2).

SVij(qi(t) - qj(t))dt < c.

Since I(q) < cx, by (V74) there exists 61 = 6 1(c) > 0 and 7 E [0, 1] such that [qi(r)-qj(r) _
61(c). It may be assumed that jqj(r) - qj(7)1 61 for otherwise the loop qi - qj remains
outside a neighborhood of 0 radius 61(c) and Proposition 2.1 is proved with 6(c) = 61(c).

Observe that by (V2) again, I-j L2 _< q j v', Using (V2) and (V), for any o e [0, 1],

orc > . Vij(qi - qj)dt

> j Uij(qi - qj)12dt

> f IVUij(qi - qj)12dt j 4, - 4j12dt
- 2c

1- Uj(qj(o) - q,(cr)) - Uij(qi(r) - qj(-)) 1 .

Therefore
Uij(qi2 ,) - qj(0)) v 'c + Uij(qi(r) - qj(r))

_v2c+ sup Uj(x) <cc.
1z1=6 1 (C)

This last inequality together with (V4 ) and (V6 ) implies the result.
Proposition 2.1 allows us to seek critical points of 1 in A and thereby exploit the

topological structure of A. This will be done in §5. The breakdown of (PS) will be
studied in the next proposition. This will lead us to define "critical points at infinity" and
their "unstable manifolds" in later sections.
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Proposition 2.2. Let V satisfy (VI) -- (V4) and (1/6). Let (qk) C A be a sequence such

that I(qk ) --* c and I,(qk) --. 0. Then either

1' there exists a subsequence, again denoted by (qk) and a sequence (vk) C R' such that

qi t'k converges in TV" 2 for i =- 1,2, 3, or

2' there exists a subsequence, again denoted by (qk), i E {1,2,3}, and (vk) C R'
satisfying

a. I[q'] - VkI - C, fq4j11L2 -- 0, and

b. if j, r E {1, 2, 3}\{i}, (qV- Vk, r- Vk) converges in W', to a classical solution of

the two-body problem with potential Vjr + rj and as k - 0,

j (ik +4 412) _ _ q k)- q) -Vrj(qk _ q)] --+ c

Remark 2.3. In fact we will show l[q + q ] is a permissable choice for Vk.

Proof of Proposition 2.2. As in Proposition 2.1, the bounds on I(qk) lead to bounds

depending on c for i1k11L2 and

'j(q' - qk)dt, 1 < iZj < 3.

By Proposition 2.1. there is a 6(2c) > 0 such that

(2.4) Iqk(7) - q k(i)l > 6(2c)

for all k E N. 7 E [0, 1] and i 3 1j. The bounds on jjk JJL 2 and standard embedding

theorems imply that q k _ [qk] converge along a subsequence - which will still be denoted

by qk_ weakly in E and strongly in L' to q C A. If for some rj, J[q q --+ 00,

(2.5) ,(q k _-+

in L' via (V3 ). If [q - qfJ is bounded, V,(q - qk) converges via (17) and (2.4). Thus

Sj(qj qr) converges for all pairs r j and

(2.6) V (qk) -+0

then implies k converges in L' to q.

If I[q -qk]l --+ oc for all 3 pairs of indices j r, (2.5)-(2.6) show j = 0 and I(qk) -+ 0, a

contradiction. Thus there is at least one pair of indicesj # r such that [qk- qk] is bounded.

Without loss of generality we can assume (q - qk] converges. Set

k k
(2.7) ,- 2[qj + q.
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Then
k -V = kr r 1cq '

converges in 1V 1 -,2 as does q vk. Let i E {1,2,3}\{j,r}. Either (i) ([qk - q*]) is

bounded, or (ii) [[q' - q j - oc (along a subsequence). If (i) holds, we may assume

[qk - q k] converges and therefore qi - vk converges in 11712. This corresponds to case 10

of Proposition 2.2. If (ii) occurs, by (2.6), Vi'(qk - q')! 1ri(q k - qk), Vj'q - qk), and

1i"(ql -q) --* 0 as k --+ o since their arguments -- oo uniformly in r as k -+ co. Thus

qj-[q ] converges toO in ,1,2, i.e. 111IL2 -+ 0 as k -+ c, and I[q -Vk]l -- oc as k -+ cc.

This is precisely case 2' of Proposition 2.2. The proof is complete.

Corollary 2.8. Suppose q E A satisfies 0 < a < I(q) < b. Then there exists e0, co > 0

(independent of q), v(q) E Re, and two indices j 0 r e {1,2,3} such that if jI'(q)jjV,.2 <

e0 . then

Ilqj - vIwt,2 + lqr - vIIw,,2 < c0 .

Proof. This follows immediately from Proposition 2.2.

For s > 0, let

t = {q = (q1,q2, q3) e AII(q) < s}.

We now study F' for small s.

Proposition 2.9. Let V satisfy (Vi) - (15). Then there exists an e1 > 0 such that

(ii) For all A > 1 and q E I',

q\ =-A[q] + A-'(q - [q]) E f',

(111) For all A E [1, 2) andq E I",

qlE A[q]+exp(1 + (A - 2)-') (q-[q])EE1

2 --2[q] E I ',

(iv) there is an E2 < Ei such that if 0 < E < E2, IC is homotopy equivalent to the set

() {(x 1 , x 2 , x 3 ) C (R) 3 
- V(x 1 , X2, x3) < e}.

Proof. Without loss of generality, el < 1. Since (q) = q, for all A, p _> 1, if q E 1

and

(2.10) d 0,

dA



it easily follows that qA E I' for all A > 1. Hence (ii) and also (i) follow from (2.10). Now

(2.11) qq = - -Ildt - V'}(qi - qj).
X~li~j=l

([q2 - qj] - (qi - (qi] - qj + [qj]))dt.

We rewrite each term in the V sum as

(2.12) - j '<(qi - qj) (qi - q;)dt + 2 V'(q2 - q))

(qi - [qj + [qj] - qj)dt.

Since I(q) :_ 61, by (V2) we have

(2.13) Ilq1 - [qi]jILv + llqj - [qj]lII < 16IL2 + 1qj jL2 < 2vrf-.

Now (2.12)-(2.13) imply

(2.14) d- - j(({q4 - ((q ) ))dt)

< [-' i(qi - qj)" (q5 - qj) + 4,/ElVi'(qi - qj)I]dt.

Applying (V5 ), there exists a constant A such that

(2.1b) -Vi;(x)• x + 411/'.(x)l < 0

for Ix I > A. Since I(q) < el,

- j , j(qj - qj)dt < 61.

For

e < a0 = min (-Vii(x)),
IXi<2A

by (V,) and (V3), there is a T-1 E (0,1] such that

(2.16) jqj(T,) - qj(r,)l > 2.4.

Now (2.16) and (2.13) imply for E, < - 2 = a, that

(2.17) jqi(r) - qj(r)1 _ A

"'"'= = ,,,.muu ng mumm mlan ma N N I II II9



for all r E [0. 1]. TI,,.refore if E1 < min(a0, a ), we have

(2.18) -y,(q,(r) - qj(r)) (q,(7) - qj(r)) + 4V/eT 11,'(qi(7) - qi(r)) < 0

for all r E [0. 1]. Thus

(2.19) d'- j V1j((q)i - (qA)j)dt) < 0
d AI

an(d (2.10). (ii). and (i) follow.

To prove (iii). we need to calculate the derivative of I(T!,i) for each A. Using the fact

that exp(A - 2)- 1 and (A - 2) -2 exp(A - 2)-' are bounded for A E [1, 2), uniformly in A.

the proof is essentially the same as for (ii) and will be omitted.

Lastly we turn to the proof of (ii). Let

2.2 0) B = {2[q] I q E F' }.

Using (iii. we can define a hoinotopy between F' and B via

(2.21) [0. 1] x F ,' -P+

(6,q) -- +

The continuity of this retraction is clear. Observe now that by (V ) and (V), for e small

eno)ugh, e.g. E < 61, the set

S(E) = {(x1, X2, X3 ) E (R) I -V(xl, x 2 , x 3 ) <_ e}

is contained in B. Also by (ii), Ab E B if b E B and A > 1; indeed if b = 2[q], then

Ab = 2 Fq,\]. Now (U- ), (V 2 ). and (I). together with the fact that -V(b) < '6 for all b E B

(which is a consequence of (iii)) imply that -b(A) =_ -TV(Ab) decreases monotonically to 0

on B as A - D. Therefore it is possible to define a function A B --+ R via

(2.22) A(b) = inf{A > 11 -V(Ab) < E}.

Since -V(Ab) decreases monotonically to 0 as A ---* oc, A is continuous. The map u

[0. 11 x B --+ B defined by

(2.23) u(6, b) = (1 - 6)b + 9A(b)b

retracts B by deformation on S(e) and (iv) holds.

10



To prepare for the next result, note that I possesses an Re symmetry. More precisely,

for E Re. let t0,(f) = ( Then

(2.2) I(q + I(q)

for all q E. A and " E Rt. Therefore

(2.2') = 0

for alI q E A and W Re. Letting D denote the duality map from E' to E, (2.25) is

equivalt-ii to

3

(2.26 = 0.

Now we have:

Proposition 2.27. Let (D ((D 1 , A 2 , "D3 ) E C'(A, A) such that

(2.2S) [kI(q)] =0

for all q E A. Let r(s. q) = (r7(s, q), r72(S, q), r73 (s, q)) denote the solution of the differential

equation

di = 4(77), 1(0,q) = q C A.
(2.29) ds

Then for all 6 for which the solution is defined,

3 3

(2.30) E[(sq)] = 7[qj].
i=1 j=l

Proof. By (2.28)-(2.29),

3 d3(2_.31) 1: ds ds =o=i -

Therefore

3

(2.32) E[,1(s, q)]

11



is independent of s. Hence (2.30) follows from (2.29).

Now some properties of the "two body problem" with potential Vi + Vij will be

considered. For the sake of simplicity we take i = 1 and j = 2. Define

(2.33) A 1 2 - {(ql,q2) E WI' 2 (R.(Re) 2 ) (ql(t) 34 q2(t) for all t E [0,1]}

and

(2.34) I12(ql,q2) =12(q)

= j' 1[ 42I2) -(V 12 (q, - q2 ) + V2 1 (q 2 - q1))dt.

Propositions 2.1, 2.2, and 2.9 have the following analogues for the two body problem

associated with (2.34):

Proposition 2.1'. Let V12 satisfy (V1),(V 2 ),(V 4) and (V6). Then for any c > 0, there

exists 6 = 6(c) > 0 such that q E A 1 2 and 112(q) :< c implies

inf Iql(t) - q 2 (t) > 6
tE[0,1]

Proposition 2.2'. Let V1 2 satisfy (Vi) - (V4 ) and (V6). Let (qk) C A12 be a sequence such

that 112(qk) -- c > 0 and I 2(qk) -+ 0. Then there exists a subsequence, again denoted by
(qk) and (vk) C Re such that qk - vk converges in W 1'2 for i = 1,2.

Proposition 2.9'. Let V12 satisfy (V1 ) - (Vs). Then for el small enough, (i) -(iv) of

Proposition 2.9 hold with I replaced by 112 and B(E) by

1312(6) {(X 1 ,X 2 ) E(R' )2 -V 12 (X1 ,X 2 ) 5 f}

where 1 12 = V1 2 + V2 1.

The proefs of these results follow the same lines as their earlier analogues and will be

omitted. Note that Pr ..- sitioi 2.2' says that 112 satisfies the Palais-Smale condition up

to translations. Ca. ,f Proposition 2.2 has no analogue here since if e.g. I [q ]
while I[q']j remains bounc,-d, then (q k-- [qj) aid (qk _ [qfJ) converge to zero and therefore

1 12 (qk) -+ 0, contrary tt pothesis.

We also have ai. analogue of Proposition 2.27 with the same proof:

Proposition 2.27'. Let (12 = ('I1, (2) E C'(A 12 , A1 2 ) such that

2

(2.28') 0-¢dq)] =0

12



for all q E AI.. Let 7712(s, q) denote the solution of the differential equation

(2.29') d = D12(7112), 7712(0, q) = q E A 12 .
ds

Then for all s for which the solution is defined,

2 2

(2.30') Z-'[I2(s, q)]i = _[qi].
2=1 t=1

Our final result in this section concerns the following important special case of (2.29'):

)d -112(7712), 7712(0, q) = q.

(2.35) ds

For 0 < a < b < cc, set

C 12(a,b)- {qC A12 11I2 (q)=0 and a< Il2(q) _5 b}

Proposition 2.36. Let q satisfy a -< 112(q) ,5 b < oo and let 7712(s, q) be a solution of

(2.35). Then

(i) there exists a constant c(q) independent of s such that 1[7712(s, q)]f I c(q) for any s for

which

(2.37) a < 112(77(S, q)) < b.

(ii) There exists a constant C(a, b) and a uniform p-neighborhood, N(p), of k,12(a, b) such

that whenever q E N(p), there is a v(q) E Rt satisfying 11(r72(s,q)) - v(q)[[w1., <

C(a, b), i = 1,2, for all s > 0 for which (2.37) holds.

Proof. Arguing indirectly, assume there exists a sequence s,, for which (2.37) holds and

1[772(sk, q)1 - cc. Then I.0
(2.38) 1712(sk, q) - q'll , < 1 11'x2(7712(s, q))I w1,2ds -+c

while

(2.39) j 1 2(7712(s,q))1v, ds = j -1I(7l12(s,q))ds < b - a.

If (sk) were bounded, (2.38) - (2.39) would be contradictory. Therefore

lim sk = ±00
k-r~o

13



and (2.38) implies the existence of a sequence -rk --+ oo satisfying (2.37) and such that

I 12 (ql2(k, q)) - 0. Using Proposition 2.2', there exists (vk) C Rt for which (/712(rk, q))i-

Vk is strongly convergent, i = 1, 2. Proposition 2.27' then implies that (vk) is convergent.

Therefore (7712(rk, q)) is convergent.

Assume, without loss of generality, that

lim Sk = 00.
k-oo

The argument just given shows the existence of -y and M > 0 such that if s E [0, cc) and

(2.40) 11'1'2(/]I2(s, q))[Iw V. 2 < -t

then 117l2(s,q)JIwI,2 < M. Since 1['71(sk,q)]l --, o as k -+ oo, (2.40) is violated when

s = sk for large k. Given Sk, let 9k be the largest positive value of s less than sk such that

(2.40) holds. The existence of (9k) follows from that of (-rk). Observe that

(2.41) 11z2(r712(s, q))I w,, > -r

for s E [7k, skI. Now by (2.41) and (2.39),

k(2.42) I['q12 (5k, q) - 7712 (7k, q) Zk 11] il{(7712(s, q)) ~1.Z2ds

1 f' b- a
- IIT12(i7x2(S, q))f 2 1,2 dS b-Y';' 7

But 1[712('k, q)]f I< M since (2.40) holds for s -- 9k. Therefore

(2.43) 1II7712 (5k, q)]l I M + b-a
-y

contrary to the choice of sk and (i) follows.
V

To prove (ii), an argument as in the proof of Proposition 2.2' shows there is a p > 0

and el(a, b) such that for any q E N(p) there exists v(q) E R' satisfying

(2.44) J]qi- v(q)IwI. < C1 (a,b), i = 1,2.

The constant Ci(a, b) is independent of q E N(p). Equation (2.35) shows

(2.45) 7712( S , q - i/ 12 (v(q)) i = 7712 (S, q)i - v(q), i = 1,2.
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Now arguing indirectly, we assume there exists a sequence (qk) C N(p) and Sk 0 such

that

(2.46) b > f 12 (?112 (sk, qk)) >_ a and jj7 12 (sk,qk) - 012(V(qk))l i.2 --+ o as k -- oc.

Since I 2(q) = 12(q- l-'12()) for all E Re, as in (2.38)-(2.39) we have:

(2.47) j Il 2 (i2(s, qk)) 1 1 ,,ds < b -a

j I'2 (m?12(s, qk))Il w, 2ds -+ oo as k - oo.

As earlier (2.47) implies that sk oc as k -- oc. Arguing as in the proof of (i), consider

sequence rk -- oc such that I1 2 (7 1 2 (, qk)) . 0 and a < I12(r712(k, qk)) < b. We will

prove that 7712(rk, qk) - 0 12(v(qk)) has a convergent subsequence. Indeed Proposition 2.2'

yields the existence of (vk) C Rt such that

(2.48) (771 2 (rk,qk), - vk is convergent.

Proposition 2.27' together with (2.45) then implies

2 2

(2.49) 1[(r7l2(rk, qk - 0'12(vk)))i] = J' ] - 2Vk.

i=l i 1

Thus the right hand side of (2.49) is convergent. By (2.44), [qkl + [q'] - 2v(q k ) is bounded.

Therefore it can be assumed that vk - v(qk) is convergent. Hence 712(-rk, qk) - 0 12 (v(qk))

has a convergent subsequence as stated. This shows, as in (i), the existence of y and M > 0

such that if (2.40) holds with q = qk and s E [0, Ski, then

11712(s, qk) - 1 2(v(q ))Il w-, 2 < M.

Now (2.46) implies that 11I[2(r712(sk,qk))jjW1,2 > -y for large k. As in (i), the existence

of 7k implies 8 k, the largest positive s < Sk such that 11,I2(r12(9k, qk))j wVI,2 < 7 is well

defined. Then

(2.50) 1112(?712(s, qk))jt w, 2 > -Y

for s E [S k,7k] and

(2.51) Ir712(7k, qk) - 0,2(v(q))11w,,, < M.

15



By (2.47), we conclude as in (i) that

(2. 52) ii712(Sk,q) q 712(sqk) w , 2 < II," 2(712(s,q k))II wI.2ds

1k)II b - a
_ - j [ jI 2(qU(s, q )) I,1 2 ds <

Thus using (2.51)-(2.52), we have

(2.53) 1177l2(k,q k) - -¢12(v(qk))[IW,2 < M + b-a

But (2.53) contradicts (2.46) and (ii) follows.

'5'



§3. A Morse Lernna near infinity

Proposition 2.2 describes the failure of the Palais-Smale condition for I(q). Our main

result in this section provides us with a kind of Morse Lemma for a suitable neighborhood

of the set where (PS) fails. For the sake of simplicity this result is presented for the case

where ilq k - q'flw,2 remains bounded while 1IqIIL2 -+ 0 and I[q k _ q + q2] , 0.

Stated informally, we will show there is a neighborhood of "infinity" in which there is a

change of variables q = (ql, q2, q) - (q, q2, Q 3) such that

I(q) = 11 2(ql,q2) + 17 IQ1 2dt +
1 + I Q[Q l q 2] 21 2

To state the result more precisely, let

(+1 [Q3 (q + q2)] 12)

and
'I'(q)- = [ IQ3 2dt +0.

T~q) +

Proposition 3.1:

10 Let V satisfy (V1 ) - (V3). Given any C > 0, there exists an a(C) > 0 such that

whenever q = (ql, q2, q3) E A satisfies

(i) I[q - v(q)[L-o + (q2 - v(q)ILc < C and
101 1'3 112 +I<ac

(ii) '7 1 + I[q3 I- v(q)1 2 - a(C)

for some v(q) E Rt, then there exists a unique A(q) > 0 and

(3.2) - (q3 - [q3]) A q3 - q 2

such that

(3.3) I(q) = 1 12(q1,q 2 ) + T (q).

Moreover A is differentiable.

20. Conversely let V satisfy (VI) - (V5 ). Given any C > 0, there exists an j(C) > 0

such that whenever (qj, q2, Q3) E A satisfies

(iii) jjqi - v(q))IL- + j1q2 - v(q)IILo < C and

16



iv) 112 1 (C)
(iv) 2

3
L2 + 1 + I[Q3] - v(q)12

for some v(q) E Re, then there exists a unique t(ql, q2 , Q3 ) > 0 and
(3.4) q-[qi + 2] ([]

(3.) q =[l+ 2j + !(Q3 -[Q31) + JU Q3 q, + q2

22

such that

(3.5) I(ql,q2,q3) - I2(ql,q2) + 'I(q).

Moreover p(qi, q2 , Q3) is differentiable.

30 . If V satisfies (V1 ) - (V5 ) and 5(C) = ((C) are chosen still smaller, then

A(qj, q2, q3)(qI, q2, Q3) = 1, and the transformations defined in 10 and 2' are inverse

diffeomorphisms.

Remark 3.6: Conditions (i) -(ii) and (iii) - (iv) may be replaced by:
(V 2 [ql + q2] [O <C n

(v) fjqj - 2 1 +- i C, and
1

(vi) -11431k12 + 1[q3- ql+Q2] 12 -< fl(C 1 )
2 L qt 2 ' 12

with q3 replaced by Q3 for (iv). Indeed if (qi,q2,q3) satisfies (i)-(ii), then I[q,] - v(q)j _< C

fori = 1,2 and [q , + q2- v(q) < C. Therefore (i)-(ii) imply (v)-(vi) with C, = 2C

and fl(Ci) replaced by a suitable new constant. Obviously (v)-(vi) imply (i)-(ii) with

v(q) = -I[ql + q21.

Proof of Proposition 3.1: 1'. Let C > 0, q satisfy (i)-(ii), and set W3 = q3 - [q3]. To

verify (3.3) we must show if a(C) is small enough, the equation

(3.7) 1P j 3 12dt + 1q1 "2 ] 12

2A21 + A2 1 [q3 - j 2 ]

- I(ql,q2, q3) - I2(qi,q2)

has a unique solution A > 0. The function

'q(A) - 1 1I 2dt± +12 22A2 I +A21 V's q, +q21 12

is nonincreasing in A. Clearly

(3.8) lim Cq(A) _ 1
A-0

17



and Oq(A) decreases to 0 as A -4 o unless [q31] = [q, + q ]. If [q3)] - [q, + q ], then

2 c
(3.9) [q ] - v(q)- S I[qi) - v(q)l _ 2

i=

Thus

1 12 1 4
(3.10) 2i1 43IIL2 + +I(q3) - v(q)12 >- 4+C 2 "

Requiring that a(C) < 4(4 + C2)-' shows (3.10) does not hold and q(A) is strictly

decreasing for A > 0 and tends to 0 as A - oo. Consequently (3.8) then implies that (3.7)

has a unique solution if

(3.11) I(ql,q2,q3) - I12(ql,q2) < 1.

Let ij(x) = Tj(x) + Vji(-x) for 1 i # j < 3. Then (3.11) is equivalent to

(3.12) L (q31 - - q3) - V23(q2 - q3))

By (i)-(ii),

(3.13) jq3 - q11 [q3 - v(q)j - jv(q) - qif - 1[q3] - v(q) -1 q3 - [q3]jl - jv(q) - qil

I [q3] - v(q)l - 1l3IL2 - jv(q) - qi|

- ( -(C) 1 - (2a(C))1/ 2  - C, i 1,2.

Thus (3.13) shows

inf q3(t) - qi(t)I - 00
te[0,1l

as a(C) --* 0 for i = 1,2. Consequently (V2) - (V3) imply that if a(C) is small enough, we

have

(3.14) - - q3) + -3(q-q 3 ))dt < -
0 2

for any q satisfying (i)-(ii). If we further require a(C) < -, then by (ii),

1 o 1

(3.15) /- 14i2dt < a(C) < -

and (3.12) is satisfied. Thus 1' is proved. Observe also that A is differentiable since

VEC 2 .
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20. Let IV3 = Q3 - [Q3]. Surpose C > 0 and (ql, q, Q3) satisfy (iii)-(iv). We want to

show if a(C) is possibly still smaller than in 1', the equation

(3.16)

?LQ() 1 It i 3 1
2 dt - V1  q,+q1 ([3  - -1+''1 W i dt

k. 0 2 ~ [ 2J

' 3( q,+ 21 ±P ([3 i 1+ ± + TV3 - q2)d

= 'I(q)

has a unique solution p > 0. Clearly VQ(JL) is well defined if

(3.17) [ql+ q2 + P - 2 ) ± Va - qi(t) #02 2z

for all t E [0,1] and i = 1,2. Assume (3.17) for the moment. Let j! be any solution of

(3 16). We consider the dependence of T on 'J'(q). We claim

(3.18) Q3 q + q2(3.18) •I (q) -0 2 ]=o

and

(3.19) lim (;7)-lI, VjjIL= 0
T,(q)-0

uniformly for (ql, q2, Q3) satisfying (iii)-(iv). To prove (3.19), note that at any i satisfying

(3.16), by (V2 ) we have

(3.20) 1 1 V 3 
2dt <IP(q).

Since [TV 3] = 0,

(3.21) f 3  _ (2 (q)) 1/ 2

via (3.20) which yields (3.19). To get (3.18), note that by (iii) and (3.21),

(3.22) + q2 [ q+q2 1(32) 2 +7 3 2 + -W3(t) -qi(t)l

< _ [q1I - v(q)l + 1I[q2] v(q) I + Ilqj - v(q)11L-o +7- [Q3 - q, + q2]

-+ 31 + (2 I(q)) 1/ 2 + 7 [Q3 _ q1 + q2

IL - 2 2
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for i = 1, 2. If there were a sequence (qk, qk, Q1) for which 77 Q, _ l 2 remained

bounded while T(qk) _ 0, then

_ f>- 'l, 1 -'-q+ k q3 +q f T3k_ 2

JV3 2 2IkKY TJ+ k~) L

would be bounded from below by a positive number uniformly in k as a consequence

of (VI) - (V3), and (3.22). This would contradict (3.16). Therefore (3.18) holds for any

solution Ti.

Next observe that AP(q) -* 0 if and only if

1132L2 + 1
21 L -t-1 + 1[Q31- v(q)0

for any (q1, q2, Q3) satisfying (iii). Indeed we have

(3.23) I[Q3] - Vq) Q3 - 2 + 2 S 1W - v(q)
[Q1 qq, + q2 +

2 2 -

and

(3.24) 1Q3 - 2 q] l[Q] - v(q)I + 1 [qi] - v(q)I

< [Q31]- v(q)l + C"

Thus AI,(q) is small is equivalent to Z'(C) is small since (qj, q2, Q3) satisfies (iii) and (iv).

We require that 4
Z(C) < 4+C

Then Q3 -q + q2 is strictly positive by the argument following (3.10). Therefore2 2 1

PI [Q3 ql +q2 .--.O
p 3 2

as oo -* c. Since

V3  +I [q, + q~] -

20



remains bounded, i = 1,2, asp -- oo, we see from (V3) that

(3.25) 'q(,u) is defined for large it and lim O¢Q(I) = 0.

The interval on which OQ([.) is defined can be characterized further. By (iii), for

i1.12,
[q+q2 < -3C

2 L 2

Using (3.21), ,Q(y) is defined if

(3.26) - [Q ql +q2] > 3C +I11IL 2

As noted above, [Q3 - 1 q2] is nonzero. Hence (3.26) defines an interval [ui, oo] since

if (3.26) holds for some M, it holds for any f > p. Let us compare V'Q(Pi) and J(q). Either

(a) 1

and then by (3.16) and (V2), 4 'Q(J'i) > IP(q) or

211

in which case

(3.27)2 
+  + < + 1 + (22J(q)) /

1 1 2- 2

and for i = 1,2,

(3.28) [q, + q21 +Pi( Q3- ql + q2]+-W3(t)-qi(t)

S [qj + Iv(q) - qi(t)I + W3 11 L2 + pi Q3 -q1q2]

j=1

_ 3C + 1 + (2f(q)) /

By the above remarks, 3(C) small implies 'I'(q) < -1. Hence there is an ao such that if

Z(C) <ao and i = 1, 2,

(3.29) [qj + q2] + Ui Q3 ql + q2 + qi(t) < 3 + 3C

2 + ~~Q- + 2 ])± 3 ( -q() 33

for all t E [0, 1J. Now (3.29), (3.16), and (V2) imply the exis' mce of a constant O3(C) > 0

such that

(3.30) V)Q(/zl) > O(C)
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where /(C) is independent of (qj1,q2, Q3) satisfying (iii)-(iv) (provided that "T(C) < ao).

If we further choose a(C) so small, say QT(C) < aI, so that

(3.31) 41(q) < 3(C),

(3.30)-(3.31) show OQ(Mi) > '(q) for case (b) as well as for case (a). This coupled with

(3.23) shows that (3.16) has a solution T. Observe that any solution satisfies (3.18)-(3.19).

Hence (3.26) follows from (3.18)-(3.19) for j = y provided that T(q) is small enough.

Therefore p E [p 1, oc) if a(C) is small enough.

To prove the uniqueness and differentiability of 7, we need only show

(3.32) ¢b(q) < 0.

For i = 1,2, let

Xi=[ql + q21 + ([ q + q2] + -1I3-

z i = - q, + -q2 77- 2 T17 qi
= [Q3 - q 1 )q2 1 2T31

and
adi = -27 - 1 TV3 + q, [q, + q2]

Then

(3.33) _7(-) = j1 iW312dt - j V 1 (xi). ydt

+ V(-x 1 ). (y)dt - V23 (x 2 ). ydt + j V32 (-x 2 )• ydt

I/o I'
=- j- 1 W,3 f2 dt - j V 3 (X). (XI + zi)dt

"1 V, (-XI)(XI+ ZI)V 2 3(X2 )(X 2 + Z2)

+ 3'2(-x 2 ) " (X 2 + z 2 )dt.

From (3.1S)-(3.19) and (iii), we know that for i = 1,2,

(3.34) Ixi(t) >2! T[Q 3 - q 22 -+ q2 L 3 C 00

as %P(q) -- 0 and

(3.35) IIz1(t)llL < 3C + 211 WI3IL < 3c<+ 1

-2
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if Z3(C) i5 5inall enough. Using (V5), there is an a2 such that if j-(C) < a2,

(3.36) V3 i(Xi). Xi- (41 + l) V3 i(xi), > 0

-V( X) ( + V (-x,)i > 0

for i = 1.2. By (3.36), g, ( ) < 0 if .(C) < a2 and the proof of 20 is complete.

Lastly to prove 30, let q3 be defined by (3.4). Then

(337) [q3] [qi +q2] +/ 0 q +q 2

and

(3.38) q3 - [q3] = P-'(Q3 - [Q3]).

Solving (3.37)-(3.38) for [Q3], Q3 - [Q31 yields:

(3.39) [Q1=q, +±q2] +/ q q, +q2]

and

(3.40) Q3 - [Q3Q = pi(q3 - [q3]).

In the proof of 20, it was shown that kP(q) --+ 0 is equivalent to Z(C) -* 0. Consequently re-

calling that 11' = Q3-[Q3], (3.39)-(3.40), (3.18), and (3.21) show that [q 3 - q2

oc and 11q311L2 -- 0 as Z --* 0. Hence (qj,q2, q3) satisfies (i) and (ii) for - small. Therefore

(3.2) holds. Comparing (3.2) to (3.39)-(3.40) shows A(qj,q 2, q3 ) = 1-- (qj,q 2 ,Q 3 ). The

composite of the transformations of 10 and 20 is then readily seen to be the identity and
30 easily follows.

In §5, we will need the following consequence of Proposition 3.1:

Corollary 3.41: Let (qj,q2) E A12 and set

2 1

C 2 (q,,q 2 ) = Z iq - - q, -+q2J1.1o.

Then there exists a continuous function a(qi, q2 ) such that if q3 satisfies (ii) of Proposition

3.1 with c(ql, q2 ), then both systems of coordinates given by Proposition 3.1 are available

at (qj,q 2 ,q 3 ).
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Proof: ty Proposition 3.1. for any (ql,q2) E A\1 2 and C = C 2 (q 1 .q 2 ), there is an a(2C)

for which the conclusions of the Proposition are valid at (ql, q2, q3) for any q3 satisfying

(ii) (with , = [qI + q2]). Note that (i) is satisfied with C replaced by 2C for all points in

a neighborhood 11q,"q of (qj, q2). This gives us a covering of A1 2 which possesses a locally

finite refinement {1t,}. Let (pm,) be a smooth partition of unity subordinate to {Wmn}.

Now define

(a.42 (q 1 ,q 2 ) = (2C)It-P.(qiq2)
m

where a( 2 C)w,,, is the a(2C) associated to some I 1 ,q, such that 'Vm1 C TIVq,,q 2 . Then by

(3.42).
oa(ql, q2) : a(C)wV

where a(C)w is the largest of the aw such that pwm(qlq2) 7 0. Since Proposition 3.1

holds at (qj, q2, q3) where q3 satisfies (ii) with a = a(C)w, it holds a fortiori for a subclass

of q:3's with a = a(ql,q2).

Remark 3.43: The function a(ql,q2) may be chosen so that it is differentiable with

derivative bounded by T. Namely we can take pw satisfying lptvI < Kwp for a suitable

constant At and then choose a(C)w < IK-l .

We conclude this section with two more corollaries of Proposition 3.1. The first of

these provides. modulo translations, a priori bounds for critical points of I which depend

on the corresponding critical value.

Corollary 3.44: Let V satisfy (VI) - (Vs). Let l > > 0 be given. Then there

exists a constant C(e,.A) > 0 such that for any solution q = (ql, q2, q3) of (HS) satisfying

el <_ 1(q) <_ .1l, there is a v(q) G R' so that

3

Z Ijqi - v(q)l wt, 2 < C(El,-_1).

Proof: If the Corollary is false, there is a sequence (qk) = (q, q2,q3) such that

I(qk) _ c E [El. .I. I'(qk) 0 0, and qk '(&) is not bounded in JV 1 ,2 for (ak) C R'.

Since (I(qk)) C [.M]., qk is bounded in L 2 . Therefore ([qk] - ?(k)) is not bounded in
R'f . An argument as in the proof of Proposition 2.2 shows [q - q'] converges (along a

s11l)s(qucne) for some i 5 j for otherwise I(qk) -- 0 0. Hence without loss of generality, we

can assume [(I q conergs. Let --egq( . Then [qk] - . is bounded, i = 1,2

andt we can assune q1 -, converges. i = 1, 2. As in the proof of Proposition 2.2 again.
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this - k', k2, 3(q - qk), etc. --+ 0 in L'. Hence by (HS), qak  0 iL'

So q' - 0 in 2 . Choose C so that qk satisfies (i) of Proposition 3.1. Then for large k,

qk also satisfies (ii) of Proposition 3.1. For such k, we may write

(3.45) I(q k ) = 112(q, q ) + 'P(qk).

Therefore by Remark 3.6, (k, q , Qk) also satisfies (iii) and (iv) of Propositicn 3.1 for large

k. Bv 2'(b) of Proposition 2.2, I(qk) -Ii2(qi,q k ) 0 O. Consequently the sequence enters

the domain where the map

(3.46) (ql,q2,q3) - (ql,q 2 , Q3 )

is a diffeomorphism. Il this domain, critical points of I(q) are also critical points of

(3.47) I(ql,q2, Q-) = 112(ql,q2) + T(q)

in the (q1 ,q2, Q3 ) coordinates. At such a critical point, [Q3] = .- [q, + q-]. As has been

noted earlier. a(C) < 4(4 + C2) - 1 implies this is impossible. Thus I has no critical points

in this region and there does not exist a sequence as above. The Corollary is proved.

The final result in this section shows that the only "(PS) sequences" in a neighborhood

of infinity are those which have a "two body" limit.

Corollary 3.48: Let V satisfy (Vi) - (V6). If C > 0 and 0 < a < b, then there

exists an a(C,a,b) such that whenever (q k) is a sequence in A satisfying (i) and (ii) of

Proposition 3.1 with C and a(C, a, b) and such that I(qk) -+ c E [a, b] and IP(qk) -0+ , then
I k(q ,q2 ) - c, I 2(qk,qk) --+0 , and T (qk) _+0. In particular (iii) and (iv) of Proposition

3.1 are satisfied by (ql,q1,Qk) for large k.

Conversely let (q, , Q k ) be a sequence in A satisfying (iii) and (iv) of Proposition
3.1 and such that 1 12(q,q ) c E [a,b], I2(ql,q2) --+ 0, and T(qk) __ 0. Then

I(q ,qk,q.2 ) - c and I'(q ,q.q ) - 0. In particular (i) and (ii) of Proposition 3.1 are

satisfied by (qk,qk,qk) for large k.

Proof: Suppose (qk) satisfies (i) and (ii) of Proposition 3.1 and J(qk) -- c, I'(q') -+ 0.

Then either 1 or 20 of Proposition 2.2 holds. If 20 holds, there is a subsequence of qk

and a pair of indices r $ j E {1,2,3} such that I[qk - q ]l is bounded and f[qk - qk]

-[q, - q']I- oo where i is the third index. Then by (i) and Remark 3.6,

(3.49) llqf 1 +2 lL
t=l
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Thus (3.49) shows I[qk - qk]l is bounded so 20 holds, {r,j} = {1,2} and i = 3. Hence by
2 11k IIq k

20-, IfflL2 -- o, j[q' - (q + q')]I - oo, Il2(q'>q2) -+ c and I' (qk,q ) -- 0. Thus

lp(qk) - 0 along this subsequence. Therefore (iii) and (iv) hold for large k along this

subsequence.

If 2' of Proposition 2.2 does not hold along a subsequence, J[qi - q)]l is bounded for

1 - j - {1,2,3}. We can take vk = I[qk + qkI as in (2.7). By 10 of Proposition 2.2,

ql -Vk --+ q' in W1,2 for i = 1,2, 3. By (3.49),

(3.50) Jqfl'NLO + JJq IILL < Ci.

By Corollary 3.44, there is a w(q ° ) E Re such that

3

(3.51) lq? - w(q')lw1,2 < C(a, b).

Therefore by (3.50)-(3.51),

(3.52) tw(qm)l _ C + C(a, b).

Now by (ii) and Remark 3.6,

(3.53) [(C1) k] - v(q)

<-- - v(q') - [q' ]l + I[q ] - w(q'l + lw(q')I.

Hence for large k, by (3.51)-(3.53),

(3.54))1 1 + 2C(a, b) + Ci.

fl(C1) -

But as a(C) -+ 0, the left-hand side of (3.54) -+ 00 while the right-hand side remains

bounded. Thus (3.54) cannot hold for small a and we must be in case 2° of Proposition

2.2 along our subsequence. Finally observing that what has just been established holds

for a subsequence of any sequence satisfying I(q k ) -_ C, I'(qk) -* 0, our conclusion must

hold for the entire sequence, and the first half of Corollary 3.48 is proved.
k' k'Qk) k C k'k

For the converse, suppose that (q[, q2, Q3) is such that I12(qlq k ) - c, I12 (ql, q)

0, and P(qk) 0-+ 0. Then the associated (qk,qk,qk) satisfy:

i(q, ,qk,qa) = I,2 (qk,qk) + ,P(qk).

26



Therefore I(qk,qk,q k ) --4 c and (3.55), (V ), (17) imply

(3.56) 1klIL2 --* 0 and - j V 3( q - qk )dt -* 0,

i =1, 2. Proposition 2.2' implies the existence of vk such that (q' - vk) converges for

i =1, 2 along a subsequence. Thus (i) of Proposition 3.1 holds for large k along this

subsequence. Also (3.56) shows that j[q k] - vkj -* :: as k -4 o and iqk - [qk]IwI.2 -+ 0.

Consequently I'(q , qk , q ) --* 0 and (ii) of Proposition 3.1 is satisfied for large k along our

subsequence. As in the first part of this corollary, it then follows for the entire sequence

and the proof is complete.
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§4 A modified functional

Let 0 < el < M with el small and M large. To prove Theorem 1, we would like

to use the unstable manifolds for the negative gradient flow of I corresponding to critical

points of I in IM . Unfortunately the critical points of I might be degenerate and the

gradient flow does not satisfy the (PS) condition so we cannot do this. Therefore we

will approximate I by a new functional which is well behaved enough to permit the above

ideas to work.

To help handle the fact that the critical points of I might be degenerate, we use

Corollary 3.44 which yields the existence of a constant C, (fI, M) such that for any critical

point q of I satisfying !1 < I(q) < M + 1, we have
2 -

3(4.1) Ilqj - v(q) IIw,,2 < C1 (!",M + 1

t= 1

for suitable v(q) E R1. Since our functional is invariant under translations in the sense

described in (2.24), (4.1) and (HS) show the critical set of I in I- (EiM + ) iscompact
2

after quotienting out the translations and I' on this quotient space, A, is Fredholm and

proper in a neighborhood, N, of this critical set. By (4.1) and Proposition 2.9, we have

Proposition 4.2: Let V satisfy (V1 ) - (Vs). Then for any 6> 0, there exists a functional

J E C 2 (AR) such that

10 J is invariant under translations in the sense of (2.4),

20 J = I in A\N1 where N, is a small neighborhood of N

30 11 J - 'IIIC2(AR) 6
40 J 11 has only finitely many critical points in N,

50 All critical points of J 1,K are nondegenerate and have finite Morse index

60 J , satisfies (PS) for sequences in N,

70 If is sufficiently small, if - < J(q) M + 1 and J'(q) 0 0, then for a suitable
2

v(q) E R1,
3

Z iqj - v(q)[Jw1.2 < 1 + C1 (!-,M +
i=1I

80 J' $ 0 on I , = J' for El sufficiently small.

Proof: The result follows in a straightforward way from approximation arguments due to

Marino and Prodi [7] and extended by Bahri [8] and Bahri-Berestycki [9].

Proposition 4.2 allows us to avoid problems of degeneracy for critical points of I in

1 M+1 . We apply the above procedure to each "2-body problem" associated with I. For
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the sake of simplicity, we restrict our presentation to 112. Let Kij (a, b) denote the set

of critical points of I i with critical values between a and b. For p > 0, let N(p) be a

uniform p neighborhood of K 12 (El,M + 1). Then taking the quotient A12 of A12 by the

translational symmetry, I2 is Fredholm and proper on the image N(p) of N(p). Therefore

as in Proposition 4.2, we may replace I12 by a new functional, J 12 , which on A12 between

the levels E1/2 and M + 1 has only finitely many critical points. These points are also

nondegenerate and have finite Morse index. We can also assume J12 is invariant under

translations and J12 I - I12 i12 outside N(p). Moreover we may choose J 12 as close

as we want to 112 in the C 2 norm. In particular for all 6 > 0, there is a J12 having the

properties stated above and

(4.3) IIJ12 - 121JC2(A,2,R) < 6.

Next we suitably modify J using the functionals Jij just constructed. Proposition

2.36(ii) provides us with a constant 5 (2,M + 1) such that for any q E N(p), there

exists v(q) E R1 satisfying

(4.4) nij(sq)), - v(q)fw,., < r, ,-= 1,2

for any s > 0 such that

(4.5) 2-< Iii (77i(s,q)) < M + 1.

For future reference, observe that (4.4) holds for Jij and the corresponding ii with E1 and

M + - instead of Ei/2 and M + 1. Indeed either i" (s, q) E N(p), in which case applying

(4.4)-(4.5) with s = 0, q = i(s,q) and - > 6 of (4.3), we derive the conclusion, or
2 -

j ij (s, q) i N(p). For this latter case, let s1 be the maximal time smaller than s such that

jij(si,q) E N(p). Since Jji(x) = Ii(x) outside N(p), ji(s,q) = 17ii(s -31,,i(si,q))

and the same conclusion holds. Therefore for future use we have: for all q E N(p) which

is a neighborhood of the critical set for J12 between the levels el and M + 1, there exists

v(q) E R1 satisfying

(4.6) -,(qij (9,q)),- V(q)l[w,.2 < C, r = 1,2

for any s > 0 such that Ji'(qii (.9, q)) > E1.

As for (i)-(ii) and (iii)-(iv) of Proposition 3.1 for I - see Remark 3.6 - we can replace

the conditions (4.4) and (4.6) by

(4.7) q 1I(vii(,,)),- -[(,?,j(s,q))i + (1j(s,qD2]flw1.2 < 3C
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and by the same expression with fiij instead of 7ij. Conversely a condition of the form

(4.7) implies a condition like (4.4), (4.6) with e.g.

v(q) = -[(njij(s,q))I + (7ij(8, q))2]

for (4.4).

With 5 as in (4.4) and (4.6), we now define

(4.8) C=6C.

With this choice of C in Proposition 3.1, there is a corresponding C1 and /3(Ci) given

by Remark 3.6 such tl.-t if (ql, q2, q3) satisfy (v)-(vi) of Remark 3.6, then Proposition 3.1

holds. We choose C1 still larger and 3(C1 ) smaller so that in fact Proposition 3.1 applies

for this choice of CI, 3(CI), both in the (ql, q2, q3) and (ql, q2 , Qs) coordinates. Actually

we will be using this fact more for the (qI, q2, Q3) coordinates. We also further restrict

C1 and (C1 ) so that Corollary 3.48 applies. If f3(Ci) is chosen still smaller, the three

neighborhoods defined by (v)-(vi) of Remark 3.6 in the (qi, qi, Q,) coordinates are pairwise

disjoint and do not intersect the set

(q,,q2,q3) Iqi-v(q)1w,2 < 1 +C1(ElM) for a suitable v(q)

The following construction should be understood as being carried out with a permu-

tation of indices. Let

(4.10) w12: A -+ [0,11

be a C' function such that w12 = 1 on V1 , the set of (qI,q 2 ,Q 3 ) satisfying (v)-(vi) (of

Remark 3.6) with constants C' = C 1/2 and 1'(C1 ) = /3(C 1)/2, and W12 = 0 outside of

V-2 , the set of (q ,q2,Q) satisfying (v)-(vi) (with constants C1 and fl(CI)). Note that
_)1, V)2 C PfM+I.-

We define a new functional I as follows:

(4-11) i(q) 1 1- E wi(q) J ( q)

+ wq (q) (J*j(qiq.) + [1 IQI2dt 1

<J o+ I[Q, + qj 112

2
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where r E {1,2,3}\{i,j}. Defining V, (i,j), etc. in the natural way, observe that in each

neighborhood of type V1 (i, j), the functional

I(q) = J1ij(qi,qj) + f Qr 2 dt

1+ 0
+ + I[Q -(qi + qj) 112

and in each neighborhood of type V2 (i,j),

(4.12) i(q) = wij(q) (iJj(qi, qj) + f dt2 )
+1 [ + q)lr- + (1 - wi(q))J(q)

due to the fact that the sets "2 (i, i) are pairwise disjoint. Observe also that outside of the

sets V2(i,j), I(q) = J(q). In particular, by the choice of P(C 1 ), I = J near the critical

points of I having critical values between el and M + 1 since these points satisfy (4.9).

Therefore (4.11) does not change our previous modification of I near the critical set of I

between el/2 and M + 1.

Note that for any E > 0, we may choose the functionals Jij so that
0

(4.13) iIf- J11c <E.

Indeed from (4.12) and (3.5),

(4.14) 1I- Jlc < I.,-1 y(Jq - Ii + I- J)1 C-

Since the wy's are fixed, for 3 sufficiently small, (4.14), 3' of Proposition 4.2, and (4.3)

imply (4.13).

Our next step involves the definition of a suitable pseudogradient vector field, ,, for I.

For the sake of simplicity, we consider the case i = 1, j = 2; the other cases are obtained

in the same way. Let

Vo = {(ql,q 2 , Q3 ) E A I (ql,q 2 ,Q3) satisfies (4 .15 )-(4 .16 )} n IM+

where

2

(4.15) Z qi - 1 ql-+q2 C/

(4.16) *,(q) _< i
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where 01 < ) is a small constant which will be chosen after (8.1). Let 'V be defined in

the same way as Vo with 61 replaced by f(C 1)/4. We will define Z in Vo in the (qj, q2, Q3)

coordinates since by our choice of C1 , P(CI), and Proposition 3.1, they are alternate

coordinates to (ql, q2 , q3) in V2 .

Let Z1 2 (qj, q2) be a pseudogradient vector field for J1 2 (qj, q2) on -12 or equivalently

a pseudogradient vector field for J12 on A12 , which is invariant under translations in the

sense of (2.24). We further require that Z 12 generates a Morse-Smale flow under the level

M + 1. By this condition we mean the following: Consider

(4.17) LO = -Z 12(b) (0, (qj,q2)) = (ql,q2).ds

Note that any equilibrium point of this flow is a critical point of J12 and conversely. The

flow is a Morse-Smale flow if the stable and unstable manifolds corresponding to any critical

point of J 12 intersect transversally in sections to the flow, e.g. on each noncritical level

set. The existence of such a Z12 can be found e.g. as part of the proof of Theorem 7.2

for a finite dimensional case and in the proof of Theorem 8.2 for our case. Once Z 12 has

been obtained, we further require that all points (qi, q2) on the unstable manifolds of Z 12

between the levels EI/2 and M + 1 satisfy (4.15). That this is possible follows from (4.8)

and the surrounding paragraph related to the choice of C1 .

To get the pseudogradient flow in V2 , we first define it in Vo where it is given by:

d- (ql, q2) -- -Z12(ql, q2)
ds

ds

d + q ~q ]

2L 2 J

This will be denoted more succinctly in the (qi, q2, Q3) coordinates by
d

(4.19) d-(ql,q 2,Q3) = -212(qiq2,Q3).

Let CJ12 be a function such that

(4.20) C 12 COO(M, [0, 11)

CJ= i on Wo, C12 < I on 112\Vo, CJ12 > - on 'Vo and (D12 = 0 on V2 \Vl. We extend Z12
to V, as follows:

32



d
d-(ql,q2) = -Z 12 (ql,q 2 )

d
(4.21) (Q3 - [Q31) = -(Q3 -[Q31)

2[Q3 q + q2

S 2Q3 = (1 - 12 (qj,q 2,Q 3)) 2
2

Next Z1 2 is extended to T 2 . Let -Y 12 (qj, q2, q3) be the vector field given by the right hand

side of (4.21) expressed in the (qj, q2, q3) coordinates. Observe that Y 12 is defined on V2 .

Then our extension is via:

(4.22) d (ql, q2, q3) = - (1 - W12)1'

where w12 is defined in (4.10), and w 12 = 1 on V1 and W1 2 = 0 on A\V2.

Carrying out this construction on each V2 (i, j), the resulting vector field, which we

denote by Z, is globally defined and C1 . Consider the corresponding flow

(4.23)dq - Z(q).' ds

The following lemma obtains for this flow. For convenience, it is stated for the case of

= 1, j=2.

Lemma 4.24: Let

1
V1(1,2) = {(ql,q2,Q3) I CJ12(qj,q 2,Q3 ) -}.

Then there exist constants K and61 > 0 such that for any q E V 2 (1, 2)\'V'(1, 2), we have:

1'(q)Z(q) >_ 61 and IIZ(q)IIWl,2 < K

provided that 3 is chosen small enough in (4.3).

Proof. The arguments in (4.3)-(4.8) show C1 is independent of the approximation of

Iij by Jij. V2 (1,2) is defined via (4.15)-(4.16) with C1 replacing C 1/4. Since Vo(1,2) n

(1) 2 (1,2)\V'(1,2)) = , we have

2
(4.25) Ilqi - 2[q, + q2JILf-f > C114

i=3
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or

(4.26) 'I(q) > j3(C)/4

for all (ql,q2,Q3) E V2 (1,2)\V'(1,2). Suppose (ql,q2) satisfies (4.25) but (4.26) does not

hold for (qj, q2, Q3). Since Z1 2 is a pseudogradient vector field for J 12 , there is a -Y > 0

such that

(4.27) J 2 (q)Z12(q) 1fjJd 2 (q)WI,2

(where q = (q,q2)). By our choice of c = 2( 1M+ 1), q must be outside of N(p)

which is a closed neighborhood of the critical set of J 12 . Hence there exists an Io > 0 such

that IIJ 2 (q)1v,.2 > 0 and

(4.28) J1 2 (q)Z 2 (q) > co- > 0

for all q outside of N(p) and such that J 12 (q) >_ El - j3(C1)/4 > E1/2 if /3(C 1 ) < EJ/2.

Thus for this case J12 = 112 and

(4.29) I'(ql,q2 ,q3)Yl 2 (ql,q2,q3) >_ J1 2 (ql,q 2 )Z1 2 (ql,q 2 ) >_ Eo"f

and

(4.30) P212= w12 -'Y 12 + (1 - w12)WI' ,2 >

> W12EO + (1 - W12)UI,.2-

Now by (4.25) and Corollary 3.48, there is a 60 such that UI'P1 2 > 60 on V2 (1,2)\ V'(1, 2).

Hence the lower bound for I'Z follows in this case.

Next suppose (4.26) holds. Then, letting Y 12 denote the 3 rd component of Y 1 2 , we

have

(4.31) 4'1(q)V 12 =3 ['ldt + (1 + 2[Qa - (qi + q2)112) 2

(1- W2)1[Q3 - i(qi + q2)H1

Under (4.26), either

(4.32) 1 3: dt > f(Cl)18
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and then

'(q). 12  ! > (CO1)/8

or

(4.33) 1 ,(j1
1+ J[Q 3 -(q + q2)1 >  )

in which case
18

(4.34) j[Q3 - (qj + q2)]1 2 < 8 1.

Since (q,q 2 , Q3 ) E V2 , by (4.16)

(4.35) 1[Q3 - 1(q + q2)] 2 -- 1.

2 63(CI)

Furthermore

(4.36) W1 2(qj,q 2 , Q3) <".

* Hence by (4.31),
' (Q3 - (q, + q2)11

(1 + I[Qa - I(q, + q2)11) 2

which by (4.33)-(4.35) is bounded from below by a positive number if 1(C 1) is small

enough.

Thus in both cases (4.32) and (4.33),

(4.37) I'2 = 12 'Y1 + (1 - W 12)llIlW1,2

> w12', 7 12 + (1 - W12)I'lllv,,2
-(1 - )IIW 2ZllW,2Iz2 - 121

- W12111 2 - J12llwz,llZ1llw1,2.

Since II'I1 is bounded from below on V2 \Vo by a positive constant by Corollary 3.48 and

since V''12 is similarly bounded from below, we have

(4.38) P2 > 81 > 0

provided that 1112 - J 12 1 is small enough and as is proved below, II211w,,2 and iIZ121w,,2

are uniformly bounded. Thus the first part of Lemma 4.24 is proved.
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For the second part, observe that there is a constant K, such that IJI'(q)fJw,,2 < KI

whenever

(4.39) I(q) < M + 1.

Indeed

(4.40) JlJ'(q)IJw,2 < 1q4IL2 + jjV'(q)IJL 2 .

Now (4.34), (V2), and (4) imply

(4.41) 1141,L2 < (2(M + 1))1/2.

By Proposition 2.1, IJqi - q JJL- > 6 where 6 depends on M + 1, and by (Vi),(V 3 ),

Vii (s) < K2 (5) for s > 6. Hence the existence of K 1 follows. Similarly there is a K' such

that f1I 1j(qi,qj) Jw1,2 < K' whenever Iii(qj, qy) - M+1. Since III- 11C2 and 11Jij-iyj11C2

are small, we then get bounds for 111'1Iw,,2, IJti'jlwi,2 similar to those for I', 1i. Hence

we get bounds for Ziq. The construction of Z from Zij and t. bounds already obtained

then yield the bound for Z.

Lemma 4.24 has the following interesting consequence:

Corollary 4.42: Let q(s) be a trajectory of (4.23) with iE <_ I(q(0)) : M + 1 and s > 0.

Then there exists an so >_ 0, depending on q(0), i and j, such that for s > so, q(s) either

remains in Vi(i,j) or in A\V2(i,j).

Proof: Let U C W be neighborhoods of V such that ,'," C V);. an.! d;st(8U, aW) > 0.
Suppose q(s) is a trajectory of (4.23) such that q(s) E W\U for a E (81,32). Then for

s E (S,82), the estimates of Lemma 4.24 apply and

(4.43) i(q(s1)) - I(q(s 2)) = - k P(q(s)),2 (q(s))ds

_< 61(s - 32))

and

(4.44) JIq(s 2 ) - q(sl)lIw,,2 < Z JJZ(q(s))lw1,,2 < K(s 2 - 31)-

Estimates (4.43) - (4.44) show that if q(s) E aU and q(s2) E 8W, the change in I produced

by going from OU to 8W can be estimated by

(4.45) I(q(sl)) - i(q(s2)) < -61(S2 -3 ) _ -R dist(aUaW).
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Now if q(s) does not remain in -VI or in A\V2 for all large s, either: (i) q(s) E 322\32l

for all large s, or (ii) q(s) oscillates infinitely often between (a) a0v 1 and aV2 , or (b)

VI and 'V2\'Vl or (c) A\V2 and T2 . If (i) occurred, we could apply (4.43) with U = Vi,
W = V2 , and s 2 arbitrarily large. But this contradicts the fact that I > 0. If (ii) (a)

occurred, the estimates (4.45) can be applied infinitely many times again contradicting

that > 0. The argument of case (i) in fact shows q(s) § 'V2 \Vlf for all large s and thus if

(ii) (b) occurred, q(s) must oscillate infinitely often between alV' and av 1. The argument

of (ii) (a) excludes this possibility. Finally estimates of Lemma 4.24 can be shown to hold

for a neighborhood of " of V2 with dist(49,8V 2 ) > 0. Thus (ii) (c) follows from above

arguments.

4
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§5 Proof of Theorem 1.

In this section we show that (Vi) - (V6) imply that the set of critical values of I is

unbounded. The proof relies in part on some technical results whose verification will be

carried out in §8.

Since the proof is rather lengthy, we begin with a sketch. Suppose the set of critical

values of I is bounded by a. Let M > a; a precise choice of M will be made later.

Recall that for s E R, I S = {y E A I I(q) :_ s}. Let i be given by (4.11) and let Z

be the pseudogradient vector field for I constructed in §4. Finally let El be as defined in

Proposition 2.9 and 2.9'. It will be shown in §8 that any trajectory q(s) of (4.23) with

q(O) E !M+1 - IM+1 which does not enter ill and Ill or does not converge to a critical

point of I has a limit. The set of such limits, M, will be called the set of critical points at

oc of I and will be characterized as

( ={(4i,'i,Q,) E Aii x R' j , is a critical

point for J 3 ,e 1  Jq (qi,qj) -< M+ 1,

1 91and IQ,. - +[i q]]H -- - 1}

An "unstable manifold", Ww (qi, qj) will be associated with each such (qi, q). Namely

wo (q, qj) is the set of solutions of (4.23) whose limit set as s -+ -oo has a nonempty inter-

section with M. For a critical point q of I in !M+1, let W,,(q) denote its unstable manifold

for (4.23). Let K(Ji) denote the set of critical points for Jiy and KM"' - K+(Jj) n J'4+

Let K M + 1 be the analogous set for I. Set

DM+l U W. (q)
qEKM+l

and
3

V 1 .= U U
i j=l (---EKM+l

and let W'o C V12 be a set with a piecewise smooth boundary which contains I" U DM+i

in its interior. Let V, = "V,(DM+1) be an c neighborhood of DM+. By 60 of Theorem 8.2,

Woo may be chosen so that !M+1 = 1 M+I retracts by deformation onto

(5.1) WOUV(

and W1o retracts by deformation onto I" U D-+1. The sets v, and v, n woo are absolute

neighborhood retracts, i.e. ANR's - see e.g. [101 - and their homologies vanish in
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dimension > m + 1 where m will be defined shortly. Roughly speaking, the Betti numbers

(in rational homology) of (5.1) are uniformly bounded independent of M. (All references

below to Betti numbers are in rational homology.) Hence by 60 of Theorem 8.2, the Betti

numbers of A must be uniformly bounded. On the other hand, we will show that A can

be characterized as the loop space of the set of pairwise distinct 3-tuples. By a theorem

of Vigu&Poirrier-Sullivan [11], the Betti numbers of A are therefore unbounded. This

contradiction establishes Theorem 1.

Carrying out the details of this sketch is a lengthy process. First we need some

estimates for the (generalized) Morse indices of the critical points of 1 in IM+ . The

critical points of I lie in 11 so by Proposition 2.1, there is a 6 = 6(a) such that for any

critical point q of I in 1, (2.1)' holds. Moreover by Corollary 3.44, these critical points

of I are uniformly bounded in E (up to a translation) by C(Ei, a). For any such q and any

GE ,

11 3

1012 _ IM" (q), (c,') V./ (kqi2 - qj j-pj j- dt

101'(2 3 3 a92 V,
0 1 : 5 0 1 (qj - qj)( Pik - ojk)(P in --oin) dt.

0 ( i~j=1 k~on=l

The generalized Morse index of q is the dimension of the subspace of E on which I"(q) is

non-positive definite. The form of I" and above remarks on 6 and C(El, a) show the Morse

index of any critical point of I in I' is bounded above"1y some m = n(a) E N. By (4.13)

and Proposition 4.2, 111 - Illc2 can be made as small as desired and critical points of I lie

in a small neighborhood of those of I. Hence mn, being an integer, is also an upper bound

for the generalized Morse index of any critical point of I. It can be shown that PM+l is a

Euclidean neighborhood retract - ENR - of dimension at most mn. In any case, in the

sequel m is the dimension of DM+,.

Next choose k e N such that

(5.2) k > max(m + 1, 9 + 3).

(A further restriction on k will be imposed later.) Let {z} E Hk(A,Q). Then {z} may be

represented by a chain z having support in a compact set K C A. Choose M > a such

that K C IM+1. Then {z} can be interpreted as a homology class in Hk(IM+1, Q). Let

C = I" U D +,.
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Observe that DM+1 = D,. For notational convenience we will generally drop the subscript

M + 1 from P, D ' in what follows. W I in (5.1) retracts by deformation on C. Therefore

(5.3) H ,(W00 ) = H,(C).

Since V,, V n WOO and WOO are ANR's, the triad ('W1 U V,, V,6, I) is excisive and the

Mayer-Vietoris sequence holds:

(5.4) - -+,(W" u "V,) - HC'O u V,)

-+ H (WOO) ( Ir,(V-) - H,(W oo U V,) ....

(Here H,(A) H, (A, Q)). If," > m, H,(V) =O= H,(W 1 n P). Hence H, (W UV) =

H,(W"') = H,(C) for r > m. Since k > m and {z} is a homology class of order k,

{z} E Hk(C). Ideally we would like to interpret {z} as an element of Hk(P), i.e. drop

I' from C. This is not quite possible but something close to it is and will suffice for our

purposes.

For i 0 j E {1,2,3} and r : i, j, note that by (4.15), there is a C1 > 0 such that

(5.5) IIqr - 1[qj + qj]IIL + Ijqj - I[qi + qIIIL- < C1 /4

whenever (qi,qj,Q,) E D 0 and J1i(qi,qj) > Ei/2. Let a(qi,qj) be chosen via Corollary

3.41 and Remark 3.43 (with C(qj, qj) constrained by (5.5)) and further satisfying

(5.6) ci(qj,q,) < min( o ,flC 1))

Define

W J - {(q,,qj, Q,-) E Ai, x R - I J 3(qj,qj) + 1 + jQ -[q + qJl 2 =

and 1 < a(qI q)
1+ IQ," - I[qi + qj]12 4

Note that since J.h(q, qy) < ei on Wi', I i = Jjj on this set and Corollary 3.41 and Re-

mark 3.43 provide us with a diffeomorphism between (qi, qj, Qr) and (qi, qi, qr) coordinates

provided that

(. 'r 2dt 1 < a(qi, q)

(5.7) 2 1 + IQ, - -[qi + qj] 12  4

But (5.7) is satisfied here since Qr is a constant.

39



Let ('q)<#iq')< }"
QiLt= (qi,qj) E Aii l - 4 -

Note that W .i is a trivializable sphere bundle with fiber

F(qi,qj) - Qr E R1 1 +[qi + - 1 - Jii(qi,qi)

over Qij. By Proposition 2.2', J, #0 in j \j. 2 . Recalling (5.6) and further requiring

(5.8) IaI inf I I Ji'(w) I,53 1

a simple retraction argument and Proposition 2.9' show Qij has the homotopy type of a

subset of (RI)2. Hence

(5.9) H, (W:j, Q) =0

for r > 3 - 1.

Next set4

(5.10) Z =j U {(qi,qy,Qr) E A1j x R' I (qi,qi) E W,(-i,,-4j) and
-- -- Pd+1

<(a ,qi) qi)

+ IQ, - 1[qi + qj]_ 2 - 4
24

and

(5.11 c=I,, U uzti)

Since a(qi, qj) <  (C,), Zij C DVO and C1 C C. Furthermore the choice of 8(C 1 ) implies
the sets Zi1 \int Ie are pairwise disjoint. Working with the coordinates given by Corollary

3.41, it is not difficult to see that the injection of C1 in C is a homotopy equivalence.

Therefore {z} can be considered to be a homology class in C1 .

Set

Bij = Zii\int IE.

Note that

(5.12) C1 = U(Bi U I)
i0
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and

(5.13) Bj n It, = w,.

Moreover

(5.14) (B u I',) n (B13 U I ' U B32) = F,.

Let C2 = B13 U I1' U B32 . It is easy to check that the triad (C1 , B12 U 4
1, C2 ) is excisive.

Thus the Mayer-Vietoris sequence applies and yields:

(5.15) Hr+I(C1) -- Hr (I) -- H,(B 1 2 U I") ( H(C 2 ) -- Hr(C) -

By Proposition 2.9, 1"t has the homotopy type of a subset of R31. Hence

(5.16) Hr-(I) =0

for r > 3 + 1,

(5.17) Hr(C1 ) = Hr(B1 2 u I") E Hr.(C 2 ).

A similar computation with C2 replacing C1 shows for r > 3 + 1,

(5.18) Hr(C2 ) = H,(B13 U VI,) E H,(B32 U I',).

Now we will study the homology of B12 U I". We claim that the triad (B 12 U
Ie , IC, B 12 ) is excisive. This will be shown in Lemma 5.23 below. Assuming it for now

and recalling (5.13), by the Mayer-Vietoris sequence again,

(5.19) H,+I(BI2 U Ie) - H,.(We) - Hr(B 2 ) ( Hr(B 12 U t') - H,(B12 U I",)

Now (5.9), (5.16), and (5.19) show

H,-(B 12 ) = Hr(B 2 U t',)

for r > 3 + 1. Therefore (5.17) gives

H,-(C i) = H, (B 12 ) ED Hr (B23 ) (D Hr (B3 i1)

for r > 3 + 1. Thus {z} can be expressed as a linear combination of closed chains having

support in B12 , B23, and 31 .
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Using Corollary 3.41, let Cii be defined in the (qj, qj, Qr) coordinates by
1 rldt + 1< a(qi, qy)

+ I[Qr - lI(qi +qj)]1 2

Hence Bi1 C ij so {z} can be written as a linear combination of closed chains with

support in the Cijand {z} lies in the subgroup of Hk(A; Q) generated by the images of the

Hk(Cqi;Q) in Hk(A;Q). Next let

Dj= {(qi, qi,Q,-) E Ci, I Q,- = [Qrl}.

The map

[0, 11 x Ciy - Ci

(O,qjqi, Q,) -+ (q,qj,[Q] + (1- 0)(Q, - [Qr]))

is a deformation retraction of Cij onto Vij is a bundle (which can be trivialized) over Ai,
with fiber equal to the exterior of a ball. Hence the homology of Dij is obtained by taking

the tensor product of the homology of Ai, with Ho(S - l) E Hti(Se-'). Consequently

for k > max(9t + 3, m),

3

(5.20) rank Hk(A) :_ E [rank Hk-(e-.)(Aij) + rank Hk(Aii)],
i#j~1

i.e. the kth Betti number of A is bounded by a linear combination of the kth and (k-t+1)th

Betti numbers of A13. Since A1, has the homotopy type of the free loop space on SI - 1, the

Betti numbers, rank Hr(Aij), are bounded independently of r [11]. Hence by (5.20), the

Betti numbers of A are uniformly bounded. Note that this bound is independent of M.

We will show next that (5.20) does not hold for appropriately chosen k. Let Yj C (R)j

be the set of pairwise distinct j-tuples, j = 2,3. Then Y fibers over Y2:

p: Y3  Y2

p(ql,q2,q3) = (ql,q2)

where the fiber of p has the homotopy type of a wedge product of two spheres SI - 1. Since

t > 3, Y2 and hence Y3 is simply connected. The cohomology ring of Y3 needs at least

two generators. Our space A is simply the set of W1, 2 loops in Y3 and this is contained in

the set of continuous loops in Y3 , the inclusion being a homotopy equivalence. Hence by a

theorem of Vigu&Poirrier and Sullivan [111, the Betti numbers of A are unbounded. Now

set

3

(5.21) w = max E [rank Hr-e+,(Atj) + rank H,(Ai)].

s<$"
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We further require that k satisfies

(5.22) rank Hk(A) > 1 +w.

This contradicts (5.20).

The following lemma now completes the proof of Theorem 1.

Lemma 5.23. The triple (B1 2 U I"', P ', B12) is excisive.

Proof. Note first that I" has an open neighborhood in B12 U I" which retracts on I"6,

namely int 1261 n (B12 u 1'). This can be seen using the negative gradient flow for Z.
(Indeed this fact can be used in the proof that (C 1 , B12 U I', C2) is excisive.)

To complete the proof, we need only show B12 has an open neighborhood in B12 U I
which retracts on 5 12 . It suffices to show that W'1 has an open neighborhood 0 in A

which retracts on Wl" for then

(0 u B12) n (B12 u I"') = (0 n 1f,) U B12

is an open neighborhood of B12 in B12 U IT which retracts on B12. As was noted after

(5.7), W"] is a sphree bundle over Q12 with fiber at each point given by F(ql, q2). To

define an open set in A which retracts on Wl], we take a "larger" bundle over

Q*1 = (qlq2)C- 12 'E c(ql, q2 ) < 112(ql,q2) < 'Ell
2

with fiber at each point

Q3 E R' El - 112(ql,q2) < j10 1 2dt + + - 12 (ql + q2)]1

< 2(el - I12(ql, q2)) }

This latter set retracts continuously by deformation on the bundle over Q* 2 with fiber

given by F(ql,q2). Namely we contract Q3 to 0 and appropriately adjust [Q3] in the

process. Then using the gradient flow for 112, Q12 can be retracted by deformation onto

Q12. Since W1 is a sphere bundle over Q12, the retraction by defomration of the base

space lifts to a retraction by deformation of the total space and the Lemma is proved.

Remark 5.24. In §6, the extension of Theorem 1 to the case where (Vs) does not hold

will be studied. For that purpose, a sharper upper bound is needed for the smallest critical

value of I. The following corollary to Theorem 1 provides us with such an estimate.
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Corollary 5.25. Let w be defined by (5.21). For r > V + I such that

(5.26) rank Hr(Aj) > w + 1,

let A C H, (A) have rank at least w + 1. Let K C A be compact and such that the support

of one representative z C K for all {z} E A. Let M E R be such that K C IM+1. Then

KM+l 5 0, i.e. I has a critical value in IM+I\Iel .

Proof. If not, the set N defined in §4 is empty and therefore by Proposition 4.2, DM+l = q.

The number k in (5.2) can now be chosen independently of m and the argument involving

(5.3) - (5.4) omitted. As earlier (5.20) holds for k = r. But this contradicts (5.21) and

(5.26). Hence I has a critical value in IM+1.

Remark 5.27. In the proof of Theorem 1, no explicit use was made of the fact that V is

independent of t. Thus we also get:

Theorem 1'. Suppose V = V(t,q) : R x F3 (Rt) --* R is T periodic in t and otherwise

satisfies (V1 ) - (V6 ). Then the functional

has an unbounded sequence of critical values which provide T periodic solutions of

(5.29) 4 + Vq(t,q) = 0.
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§6 Weaker potentials.

Our goal in this section is to study the effect of dropping hypothesis (16) in Theorem

1. To begin, recall that (V6) implies Proposition 2.1 which forces any q E W '2 for which

1(q) < cc to be in A. If (V6 ) is dropped, there are W 1'2 periodic functions which correspond

to "collisions", ,. ,7) = qJ() for some i 54 j and r E [0, T]. If this happens, (HS) is

not defined. Thus a notion of solution is required for this situation. Modifying [2], we say

q = (q, q2, q3 ) E C(R, (R1)3) is a generalized T-periodic solution of (HS) if (5) (i) - (iv)

of §1 holds. Now we have:

Theorem 6.1. If V satisfies (V 1)-(V), Then for each T > 0, (HS) possesses a generalized

T periodic solution.

Proof. Again we can take T = 1. An approximation argument in the spirit of [2, 13] will be

used. Let X E C°(R, R) such that the X(s) = 1 if s < L, X'(s) _< 0, and X(s) = 0 if s > 1.

For each 6 > 0, let X6(s) = x (i). For i / j E {1,2,3}, let Vi}(x) = Vij(X)-81X-2X(zl).

Then Vib satisfies (VI) - (V 6 ), Vj (x) = Vi(x) if xj >8 and

(6.2) >V'x :-i~)

Set

3

1/6(q) = 7V(q - qj)
ioj=l

and d6(q) = 
'(I - V6 (q)) d.

By (6.2),

(6.3) 16(q) > 1(q)

for all q E A. Since V6 satisfies the hypothesis of Theorem 1, for each 8 > 0, I6 possesses

an unbounded sequence of critical values. Moreover, by Corollary 5.25, 16 possesses a

critical value in 4W+'\ 1 f1 where a priori M and E depend on S. Suppose 16(q) _ ei.

Then the properties of V and choice of ei imply jqj - [qi]IILco is small and I[qi - qj]l is large

for i 4 j E {1,2.3}. Hence for Ei small, I6(q) = I(q) for q E I", i.e. el can be chosen

independently of 6. Corollary 5.25 shows the choice of M depends on the compact set

K C A. Hence M can be chosen independently of 6 so that K C I M +1 for all 6 E (0, 1).

Thus for each such 6, there is a q6 E A n (1 V+ \IfZ) such that qS is a critical point of 16.

We will show that as 8 --* 0, a subsequence of (q6) converges to a generalized 1-periodic

solution of (HS). To prove this, observe first that Proposition 3.1 and Corollary 3.44 do
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not require (V6). An examination of their proofs shows that they hold uniformly for e.g.

J E [0, 1] and the constant C(e, M) of Corollary 3.44 is independent of J E [0, 1]. Thus

for each 8 E (0, 1], we have

3

(6.4 V" [ - ,,!!1V,2 < C(ej!,M) + I

i=1

where v6 = I[q' + q']. Since q6 - Ob(v 6 ) is also a critical point of 16 corresponding to the

same critical value, by (6.4) a subsequence of these critical points converge weakly in W 1 2

and strongly in L' to q E W 1 ,2 . Moreover

(6.5) V(q(t))dt < M + 1.

Indeed for all 6 E (0, 1],

(6.6) - V6(q6(t))dt < M + 1.

Consequently for e > 0,

1 3

(6.7) 1 (I - X,(Iq - qIj))V'(q - q')dt < M + 1.
oij=1

Letting 6 --+ 0, it readily follows from (6.7) that

1 3

(6.8) - ] : (1 - X,(Iqi - qjl))Vi(qi - qj)dt < M + 1.
,o iOj=1

Thus letting e -- 0 in (6.8) yields (6.5). Hence q satisfies (iii) of (5). Next (6.8) and (V4 )

imply that D, as defined in (5) (i), has measure 0 and (5) (i) holds. If r E [0, 1]\D, there

is an e,p > 0 such that if It -rj :_ p, jqi(t) - qj(t)j > e for each i 34j E {1,2,3}. The

system of differential equations:

(6.9) q' + Vs'(q 6) = 0

shows q6(t) --+ q(t) in C 2 for It - 7rf _ p and q satisfies (HS) on this set. Thus (5) (ii)

holds. Lastly (5) (iv) is valid for q6 and V6 with D6 = 0 and a corresponding constant 76.

Hence on passing to a limit, we get (5) (iv). The proof of Theorem 6.1 is complete.

Corollary 6.10. If V satisfies (V I ) - (V 5 ) and

(V7 ) V'(q) 0 for all q E(Rt) ,
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then (HS) has infinitely many distinct generalized T-periodic solutions.

Proof. We use a standard argument. By Theorem 6.1, (HS) has a generalized T-periodic

solution qT. By (V7), qT is not an equilibrium solution and therefore its minimal period is

T/k 1 f'or some ki E N. Invoking Theorem 6.1 again with T replaced by T/2k,, we find a

econ~d noneoiilibrium generalized T-periodic solution with minimal period T/kMT/kl.

Repeating this process gives the result.

As with Theorem 5.28, the proof of Theorem 6.1 yields

Theorem 6.11. If V = V(t,q) is T periodic in t and satisfies (V1 ) - (VS), then (5.30) has

at least one generalized T-periodic solution.
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§7. The Retraction Theorem and Related Results: The Finite Dimensional

Case.

A key fact used in the proof of Theorem 1 was that 1 M+1 retracts by deformation

onto the set given in (5.1). In this and the following section we will establish this fact

together with some related results. This will be done in two stages. First in this section

we will prove an analogue of Theorem 8.2 for a Morse function on a compact manifold.

Then in §8, it will be indicated how to modify this simpler situation to get Theorem 8.2.

To begin, recall if f E C'(0, R) where ( C R, %P is a pseudogradient vector field for

f on 0 if 'I is defined and locally Lipschitz continuous on {y E 0 1f'(y) 5 0} and there

are constants 0 < a such that for all y in this set:
<,(~! alf'(Y)l

(7.1){ I()Iaf(j
P>_y : lf'(01l2.

Let A(f) dmnote the set of critical points of f. Our main result in this section is the

following:

Theorem 7.2. Let M(C R "n) be a compact manifold and f E C2 (M , R) be a Morse

function. Let T be a C' pseudogradient vector field for f such that IF extend- to all of

M/V as a C' function and such that the critical points of f are nondegenerate zeros of TI.

Then in any C' neighborhood of T, there exists another pseudogradient vector field, i, of

f satisfying:

10 The critical points of f are nondegenerate zeros of <D;

20 If x, y E C(f), the unstable manifold of x, W,,(x) (for the flow generated by '1) and

the stable manifold of y, W,(y), intersect transversally;

30 If x EIK(f) and

F. = {y E q(f)\{x} I W.(x) nl W,(y) 3 ,

then

W-(X) = W-(x U ( U Wu(Y));
y
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40 If z E F, there is an r0 > 0 and a family of neighborhoods, Ur, 0 < r < r0 , of W,,(z)

satisfying

(i) Ur CUt if r < t

(ii) Ur is a trivial bundle over W,(z) with fiber homeomorphic to (W,,(x)fW,(z))U{z),

(.I) The trace of TV,(x) in U, is a trivial subbundle over W,,(z) with fiber diffeomorphic

to W,,(x) n W,(z),

(iv) f Ur =

(v) The diameter of the fibers tends to 0 as r -+ 0.

50 Let f = {x E M I f(x) < c}. If a < 6 are noncritical values of f and

W,,(a, b) f' U {WVu(x)) I x E K(f), a < f(x) < b},

then W(a, b) is an ENR and fb retracts by deformation onto W,,(a, b).

Remark 7.3. Actually a stronger statement than 50 is proved in [15], namely that Wu(a, b)

admits an isolating block in the sense of Conley [14] which retracts by deformation on

" U ((L, b).

We will now carry out the proof of Theorem 7.2. Statement. 10 follows from (7.1) and

that ' is C' close to TI. An induction argument will be used to prove 2 - 4 and for this

some preliminaries are required. Suppose dim M = e. Let y E A(f). Then there are local

coordinates near y, given e.g. by the Morse Lemma, such that R1 splits into E- D E +

where E- is Lhe unstable manifold of y for 4 and E + is the corresponding stable manifold.

Moreover, if X is the coordinate along E- and Y along E + , near y

(7.4) f(X, Y) .. f(y) - IX 2 + IY12.

Suppose x E A(f)\{y} and W(x) is transverse to E + . We want to understand how

VV,,(x) behaves along E-. Since both W,(x) and E + are invariant under the flow generated

by D, transversality here means, of course, transversality in sections to the flow lines; i.e.
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transversality of the intersections of these two sets with

Pp {(X, Y) I _X p, IYI = P1

for p small enough. Thus we are assuming that for 0 < p _ po < 1, the two manifolds:

(7.5) W.,(x) n Pp = {(X, Y) E W,(x) I IXI _ p, IY[ = p},

and

(7.6) SP = {(0, Y) I IY- = p}

intersect transversally in Pp. The intersection is then a manifold which we will denote by

Tp. In a neighborhood of a point of Tp, W.(x) n Pp may be thought of as a vector bundle

over To with fibers parallel to E- since, by a version of the Implicit Function Theorem, in

such a neighborhood, any point of Wu(x) n Pp may be represented by an associated point

on h- and an abcissa on E-. This representation has a local character in general, i.e. it

cannot be extended to all of W,(x) n Pp,, even for a p' < p, unless T7 is compact or some

other special feature occurs.

We assume that there is a C' diffeomorphism ? such that for a p' < p,

(7.7) Ob(,V,,(x) n Pp,) -, IX E E- I IXI <! p'l x T.

where denotes the diffeomorphism b. When (7.7) holds, we say W.(x) n Ws(y) intersect

transversally in a uniform way.

In order to understand how Wu(x) behaves along E-, let -/ be free for the moment

and let (XO, 0), Xo[ 1 -y be a point of E-. Let 9 E R satisfy

(7.8) 0 < 9 < (p')

and set

(7.9) so(XO) = {(Xo, Y) I IYI - 0).
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We will describe the set Se(Xo) fn W,,(x). Locally the flow corresponding to 'Z is given by

(7.10) 77(t,X,Y) = (e-x,etY).

This formula holds in a neighborhood of y, i.e. if

(1 letYi _ a; IXI < a < 1 for t > 0(7.11) 1I t IaY a1 fr<Sl-'XI <5 a; IYI <5 a < I for t < 0

holds with a suitable a. We take -y = a anid p such that

(7.12) p < min(po, a) < 1.

If z = (Xo,Y) E so(Xo) n w,(x), then

(7.13) ( 1 X0, Yp E (x) n PP,.

Indeed since IXo_ - = a < 1 by (7.8) - (7.9), 0(p')-'IXol < p' and p'-'Yl = p'. Thus

(O(p') -X o , p' 9 -1 Y) E P,,. Furthermore setting

i _ =E > 1
(7.14) e - p"7 > 1,

(O(p')-'Xo,p'O-lY) - (e-OXo,e°Y) with to > 0. Condition (7.11) is satisfied. Thus

(0(p')-1Xo,p'- 1 Y) = i(to,z) and since z E W,(x), ((p')-'Xo, p'-'Y) E W.,(x). Hence

(7.13) holds.

Conversely let p' > A > 0 and z'= (AXo, Y) E W.(x)n Pp,. Then z =(X, AY) E

SPA(Xo). Setting

(7.15) = 1 > 1,

we have tj < 0 and

(7.16) le-',AXoI = IXoI 1 oa; IYI = p' < a.

Therefore (7.10) holds on [t1,0] and

(7.17) z = 71(t 1 ,z') G W,(x).
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Choosing A = 0(p') - ' in (7.7), (7.10), and (7.17) establish a diffeomorphism between

58 (-Yo) n W,,() and {(p') -X 0} x Tp. This diffeomorphism is given by i7(to,-) o where

to satisfies (7.14). Alternatively with to = log(p'0-1),

(7.18) 77(-to,.) o - ({, X0} x TP= So(Xo) n W,(x).

Observe that the restriction JAol I< -7 plays no qualitative role in what was done above.

Once (7.18) is established for IXoI < y, it holds for any X' E E- or more generally in

W,,(y). Indeed for any such point,

hm 77(t,Xo) = y.

Thus we may choose t(X ) > 0 such that lXol = lrl(t(X ),X')j _< - and (7.18) then holds

at X 0 . The result then transports to X' through 77(t(x'), ). Moreover (7.18) extends in a

natural way to

(7.19) Bp,(Xo) n W.(x) = ({(Xo,Y) I IYI p'} n W,(x)) U {(Xo,o)}

through the map

(7.20) [o,p'] x r/{O} o I --. Bp(Xo) n W. (x)

(t, Y) 77 (-t 0, -1 (tXo, Y)), to = -logt if t 0

(0, Y) -- (Xo, O) if t = 0.

Clearly (7.20) extends to all Xo E W,(y) using the same argument as for extending

(7.18). Observe also that [0. p'] x T/{0} x T" is homeomorphic to (W. (x) n W,(y)) u {x}.

Indeed

(7.21) W(x)fn W,(y) is diffeomorphic to Th x (0, C-o),

the diffeomorphism being given by the flow, i.e.

(7.22) z E W.(X) n W.(y) -- (r(t(z), z), t(z)) E x" × (0, 0o)
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where t(z) is the unique value of t such that r7(t(z), z) E Sp. This diffeomorphism can easily

be modified to be a diffeomorph.ism to Tp x (0, p'). It maps a deleted neighborhood of x in

(W(x) n W(y)) u {x} into a neighobrhood of T x {0} in T x [0, p') and then naturally

extends to a homeomorphism which is a diffeomorphism outside any given neighborhood

of {X}:

(7.23) (w.(x) n W.(y)) u {x} - [0, p) x T./{0} x T.

The above observations combine to give the following result:

Proposition 7.24. Assume W,(x) and W,(y) intersect transversally in a uniform way,

i.e. (7.7) holds for suitable constants p' <p < Po. Then W,(y) is contained in W (x) and

there is a decreasing sequence Ur, r < r0 , of neighborhoods of W,(y) in W,(x) U W,,(y)

which are trivial bundles over W,(y) - see (7.20) - (7.23) - with fiber homeomorphic

to (Wlu(x) n W,(y)) U {y}. Moreover, Ur\W,,(y) is a subbundle over W,,(y) with fiber

diffeomorphic to wu(x) fn W,(y). The diameter of the fiber tends to 0 as r -- 0.

In order to continue the proof of Theorem 7.2, a stronger notion of transversality than

that given by (7.7) is needed. Let

?k: w,(x) n P. - {x' E E- I IX'I _< p'} x T.

so 0 -'(X', Y') = (X, Y). We assume hereafter that there is a uniform 0o > 0 such that if

P- and P+ denote the projectors on E- and E+, we have

JJP+(DO ,- , y, ((e-, 0))JI

(7.25) sup sup < a(X',Y')EO(W.(X)nPp,) e-EE-\{0} JJP-(DO¢(- 1,,Y1 ((e-0)l

where fl . is a norm on the tangent space to M.

Condition (7.25) means a uniform transversality in a strong sense since it relies on

the fact that there is a transversality coefficient a uniformly along O-(W,(x) n Pp,). For

a simple transversality, a may depend on (X, Y).
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We will say W,.(x) and E + intersect transversally strongly and uniformly if (7.25)

holds.

Now let K C W (y) be compact. Let

(7.26) g: Ur -- W,(y)

be the fibration associated with Proposition 7.24. Since W.(y) is contractible, its tangent

bundle is trivial as is the tangent bundle of M along W.(y). This yields an extension of

the tangent bundle of W,,(y) to a neighborhood of K in U,., i.e. a total space F(K) which

is a vector bundle over Ur(K), a neighborhood of K in Ur:

(7.27) gl: F(K) - U,.(K)

such that

(7.28) gj71 (K) -+ K
g 1-=(K)

is the tangent bundle to W,,(y) restricted to K. Taking r small enough, we may assume

that

(7.29) U,.(K) = g-(K)

where g is defined in (7.26). The fibers of g, are of course diffeomorphic to the tangent

space to W,(y) at a given point. Heuristically, by continuity, the direction of a g, fiber at

z E g-(K) approaches that of the tangent space to W,(y) at g(z) as z --+ g(z). Let ju be

a metric on M and let

(7.30) (2 : f(g) J -+ U,.(K) = g-l(K)

be the normal bundle to F(K).

Proposition 7.31. There exists a subbundle of the tangent bundle to W,(x) along

g-(K) - K:

g3 : G(K) -- g-'(K) - K
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whose fiber is a subspace of the tangent space to Wu(x) at the same point, of dimension

equal to dim VV(y). Moreover G(K) has the following property: For any z E g-1(K) - K

and any vector v. E (G(K)),, the fiber at z for g3, splits naturally into h, + k, where

hz E (F(K))., the fiber at z of gi, and kz E (F(K)')z, the fiber at z of g. Then

(7.32) lin il_ = 0(7.32) g-- (.) 11h.11

uniformly in z and v, or equivalently

(7.33) lim sup sup 0lk~l=
r-O zEU,(K)-K vE(G(K))z\{O} fIh iI

in the norm associated with the metric p.

Remark 7.34. Conditions (7.32)-(7.33) together with the fact that g, extends the tangent

bundle to W(y) restricted to K ((7.27)-(7.28)) means that the tangent space to W=(z)

contains a subbundle in a neighborhood of K which extends the tangent bundle to W.(y)

along K.

Proof of Proposition 7.31. We use (7.25) and (7.20). fhe latter tells us that for any

z E Ur(K)\K, -r < r, there exists to(z), t E (0, p'), t = e- t (Z), and Y E Tp such that

(7.35) z = I(-to(z), 0-(t(z)g(z), Y))

where limra- t(z) = 0, lim,._o to(z) = oo. Equation (7.35) is written in the (X, Y)

coordinates. Instead of (7.35), we will write:

(7.36) z = r/(-t0(z), -1(X,,Y'))

where (X',Y') E {X' E E- I JX'j - p'} x Tp, and (t(z)g(z),Y) = (X',Y'). Since

lim--0 t(z) = 0, we can use 0 if r is small enough.

The flow q(t, .) expands coordinates in the direction of W.(y) by a factor of et and

contracts in the direction of W,(y) by a factor of et as t -- -oc. Therefore using (7.25)

and setting

(7.37) G(K). = Dr(to(.), o-(x,,y,) o DO4, ,,y,)(E- x {0}).
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Proposition 7.31 follows.

Now we are ready to prove 20 - 40 of Theorem 7.2. This statement will be proved

by induction on the critical values. Let cl < - < c,m be the critical values of f. For

the sake of simplicity, each critical value will be assumed to correspond to a single critical

point. The set of critical points is {xi, X.} and they are nondegenerate. Now W,,(xi)

and ITV(xi) are the stable and unstable manifolds of xi for D. We are going to perturb

D in the course of the proof. This of course causes perturbations of W,(xi) and W,(xi).

Nevertheless for convenience the same notation will be used for the perturbed manifolds.

Statements 2 - 4o hold for the minimum, xj, since they are vacuous. Using the Morse

Lemma, they also hold for x 2 . In the induction below, c is a noncritical value. Let

fc = {x E M I f(x) >_ c}

and p(A, B) denote the distance between sets A and B. Let

(7.38) 2 < p < m

be given. Recall that

F., = {xj I W.(xi) n W.(x,) # €}.

We assume inductively that

(i) If W,(xi) n W,(x,) = , (W,(xi), W,(xj)) > Piu > 0, i,j < p- 1; if

W.(xi) n W3(xj) : A, W.(xi) and W(xj) intersect transversally for ij < p - 1

and the intersection is uniform and strong in the sense of (7.25).

(ii) W.(xi) n f. = (W,(xi) U {W (xj) n f, I x E F, and cj > c} for all noncritical values

c<ci, i<p-1.

(iii) For i given, i < p-1, let (((U. EF., W,,(xj)) be an open neighborhood of Uzi EF., W,(Xi)-

Then for any such 0 and any noncritical value c < ci, (W.(xi)\O) n fc is compact.

Conditions (i)-(iii) are obviously satisfied for p - I = 2. Later we are going to prove

that they are satisfied for any p after a suitable perturbation of <D. Assuming for now that
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(i)-(iii) have been established, we will show that (i)-(iii) imply 20 - 4 . Indeed (i) implies

20 and (ii) implies 3' . Lastly 40 follows from Proposition 7.24 and 7.31 and the strong and

uniform intersection property of (i).

Now we will prove (i)-(iii). Clearly (iii) follows from (ii). We win prove (i) and (ii) by

induction. We assume (i) and (ii) hold for i,j _ p - 1. As was already observed, (i) and

(ii) hold for i, j < 2. Three steps are needed to get the result for p.

Step 1. (i) and (ii) hold, after possibly perturbing D, for i = p, j = p - 1, and

cp-1 < c < cp.

In order to verify (i), we perturb the compact manifolds W,,(xp) f f-(c) and

W,(-rp-1) n f- 1 (c), so that they intersect transversally. This corresponds, e.g. to per-

turbing (D along the normal bundle to W(xp) f f-(c) in f -(c). The resulting transver-

sal intersection is then uniform and strong. Now (ii) is immediate since Wu(xp) n fc =

w.(xp) n fo.-

Step 2. If (i) is satisfied for i = p, r < j _< p - 1, and (ii) holds for i = p, c, < c < cp,

with c a noncritical value, then (ii) holds for i = p and noncritical c, Cr-1 < C < Cp.

Here we consider two cases:

Case 1. Wu(xp) fl W,(xr) = 0.

Then JL(W,(xp), W,(Xr)) _> Prp > 0 and the classical deformation theorems tell us that

if cr < c' < Cr+1 and c,-i < c < cr, then W,(xp) n f. = 7(-1,W,(xp) n fc,), for a

suitable renormalization of the flow for -f' (so that f/,\Orp is deformed into fc in "time"

-1 where Orp is a uniform iPrp neighborhood of W,(Xr)). Therefore W,(xp)N fc =

77(-1, W,(xp) n f,') since 77(-1,-) is invertible and since (ii) holds for c',

(7.39) W,(x,) n fc = W,(xp)U {W,(xj) n fc I x3 E F, , and ci > c}.

Hence Step 2 follows for this case.

Case 2. W.(x,)n W(X.) 0
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Then by (i), these manifolds intersect transversally, strongly and uniformly. From the

proofs of Propositions 7.24 and 7.31, Wa(xp) U Wu(x,) fibers locally over Wu(x,) with a

fiber homeomorphic to (Wf,(xP) l Ws(xr)) U {x,} and W,(xp) locally is a subbundle with

a fiber homeomorphic to W(xp) n W,(x,.) (contained in W,(xp) U W,(x,) U {x,}). These

fibrations are transversal to the flow of (' (see (7.18)-(7.20)) which leaves W,(x,) invariant.

Therefore for Cr-1 < C < Cr, (W,(Xp)UWu(Xr))Nffc and W.(xp)Nffc define local fibrations

over Wu(Xr) n fc with the same fiber. Consequently Wu(Xr) n fc C W,,(xp) n f, and we

have

(7.40) (WI(xp) U {W.(xj) I xj E F-, and j > r - 1}) n f, C W,(xp) n f,.

Now consider a fixed neighborhood, D, of xr. All trajectories of 4 from W.(xp) n f,, which

do not enter Q are images via an invertible diffeomorphism 77(-s,.) of some trajectories of

W,L(xp) n f,, for c, < c' < c,+,. Since

W n(xp) n f., = (W,(Xp) U {w,,(xj) I x3 E F,, and ci > c'}) n fe,

these trajectories are contained in

(7.41) (W(xp) U {W(xj) I Ej F ,, j > r - 1}) fc.

The other orbits enter Q. In Q we may assume that the local picture is known as in (7.7).

The only accumulation points in Q which belong to W,(x,) n ft are in W,(xr) n fc. These

observations, together with (7.41), yield the reverse inclusion to (7.40). Thus Step 2 is also

valid for this case.

Step 3. If (ii) is satisfied for i = p, Cr < c < cP with c a noncritical value, and (i) holds

fori=p, r+I<j:p-l, then(i) holdsfori=pandr j<p-1.

We consider again the two cases of Step 2:

Case 1. W,,(xp) n W,(xr) = 0. Then W.(xj) n W,(xr) = € for any xj E F,,, j > r for

otherwise W (xj) and W(Xr) would intersect transversally strongly and uniformly. Since
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W,(xp) intersects W,(x 3 ) transversally strongly and uniformly, W,,(x,) is contained in

W(xp) and VV,(xp)UV,,(xj) fibers locally over W,(xj) with fiber (W,(x,)NW,(xj))U{xj}.

This implies that W,(xp) n W(x,.) 0 €, contrary to our assumption. Indeed, let y E

(W,(xp) n W(xi)) U {xj} in a given neighborhood of xj with y : xj. Let S. be a section

of the (trivializable) local bundle Wu(xp) U W,,(xj) --+ W,,(xj) associated to y, i.e. modulo

a trivialization chart, S(x) = (x,y) for z E W,(xj). Then for y near xj, Sy(W,(xj))

intersects W,(Z,) since the intersection of W,,(xj) and Ws(xr) is strong and uniform and

since Sy(W,,(xj)) is only a perturbation of W,,(xj). Any point in Sy(W,(xj)) n W,(x,.)

lies in W,,(xj) n W,(x,). Hence our claim that W,,(x) n W,(x,.) - 4 for any xj E F.,,

j > r follows.

Since x,- F,, and Wu(xj) n W(xr) = q for j < r, applying (i) which holds for j,

r < p - 1, we have

(7.42) 'U( U W,(xj), Ws(Xr)) 9>0.

Consider an open neighborhood, 0, of UZi EF.P W.(xJ). 0 may be chosen so that

1
(7.43) 'U(O, W 8(x,)) >_ , > 0.

We claim that for noncritical values c E (Cr, cp),

(7.44) (W,(x,)\O) n fc n W.,(Xr) =

Indeed (W.(x,)\O) n f$ is a compact set. Clearly W,(Xr) C Uj>r W(Xj). If (7.44) were

false, we would have for some j > r + 1

(7.45) (W,(xp)\O) n fc n W,(xj) D {x}

where z E W,(x,). Then xj E F,,. 0 is a neighborhood of W,(xj), and by (7.43),

W'V,(x,) doe- not meet 0. Observe that the decreasing orbit q(-t, .) starting at x enters

0 since x E W,(x.) and xj E F.,. Moreover X E W,(Xr)\W,(Xr) so in any neighborhood
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of x we may find y E W.(xr), y W,(xj) with t.(y, W,(xj)) as small as desired. If this

neighborhood is small enough, then the decreasing orbit r7(-t, .) starting at y will enter

0, i.e.

(7.46) 77(-t(y), y) E o n W,(xr),

a contradiction. Hence (7.44) holds and

(7.4-1) p,((W.(xp)\o) n f,, o(x:,)) > o.

Now (7.47), (7.43), and (ii) imply

(7.48) P(WV,(Xp) n/,, W,(x,)) > iin , ,((W.(xp)\o) nf.,,(X'))).

Fixing c E (cr, cr+i), we get a lower bound for 1.,(W.(xp) n fc, W (xr)):

(7.49) I(W,(xp) n fc,W,(xr)) > Pl(C) > 0.

Consider the reduction given by the Morse Lemma in a neighborhood of x,. This provides

us with a description of the local behavior of the level sets of f for c close to C,. We choose

c so that this description is available. In local coordinates, the flow for ), 77(-t, .), t > 0

increases the distance of initial points to W,(xr) (for a suitable choice for this distance).

Therefore

(7.50) g77(-tW.(xp) flf),W.(x,)) > p1(c) > 0

for all t > 0. In particular /,( 7(-t,W.(xp) n f,),x,) > pi(c) > 0 for all t > 0 and

we may deform W.(xp) to any level c' E (C,._1, C,) using the flow of D. We modify the

parametrization so that this deformation takes place within the fixed time 1 > 0. For

simplicity we keep the notation 77(-t, .). Therefore for any c' E (c,-- 1 , c,),

(7.51) 77(-T, -ff.(xp) n f,) = W,(p) n f
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and

(7.52) t,(W,(x,) nlf, Wa(xr) >_ p1(c).

Since c' < c, we also have

(7.53) (fC', W.(X,)) 2 P2 > 0.

Hence

(7.54) ii(Wu(Xp), Wa(Xr)) > inf(p2 , p(C)) > 0

and (i) is proved for this case.

Case 2. W,(xp) n W,(x,.) # 0.

Since (ii) holds for i = p and c E (cr, cr+i), we have

(7.55) W (Xp) n fc = (W,(xp) U {W,(xj) I xj E FP and j > r}) n f,.

Consider an open neighborhood 0 of {W.(xi) I xj E F.,}. The intersections W,(xi) n

Ws(Xr), j > r are transversal, strongly and uniformly. Therefore 0 can be chosen so small

that the same is true for the part of W,(xp) in 0 with respect to W,(x,). Indeed since (i)

holds for i = p and r + 1 < j < p - 1, Proposition 7.24 and 7.31 hold for W,(xp) fl W,(xi)

and we have the usual local bundle structure of W.(xp) over W,(xj) with the related

tangent bundle property. Therefore any strong and uniform transversality property for

W,,(xj) translates to W,(xp). More precisely since the tangent bundle to W,(x,), along

neighborhoods of compact subsets of W,(xj), contains a subbundle extending the tangent

bundle to W,(xj), the strong and uniform intersection of W,,(xj) and Wa(x,.) implies that

of W (Xp) and W,(x,.) along neighborhoods of such compact subsets. If sucL neighborhoods

are removed, by (ii) we are left with neighborhoods of sets of the type W, ( k) n W,(x,),

k < j, zXk E F ,. Indeed (ii) implies that

W'(xj) n fc = (W.(xj) u {W.(xk) I Xz E F,, }) n f.
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Therefore we may choose a compact set in W,(xj) such that its complement is a suitable

neighborhood of {W,(xk) I Xk E Fj, }nf and our argument above applies. This lowers the

index j and ultimately shows, when all possible indices are used, that W.(xp) intersects

W,(Xr) transversally strongly and uniformly in 0.

Consider then (W.(xj)\0)n fl(c). This is compact and so is W,(xr) n fl(c) where

c E (cr, Cr+1). Along the boundary of W,(xp)\O, W,(xp) is transverse to W,(x,)nf- 1 (c).

By a standard perturbation argument, we can make (W,(xp)\O) l f'-(c) transverse to

WS(r) nl f- 1 (c) everywhere by modifying the flow along the normal bundle of W,(Xr) n

f-'(c) in f-1(c) without affecting the boundary. The perturbed W (xp) f f-(c) is then

transversal to W,(Xr) n f-1(c). This transversality is strong and uniform since it was so in

0 and since on the sets W,,(xp)\O we axe dealing with intersections along compact sets.

Thus (i) is proved for Case 2 and the proof of Step 3 is complete.

The three steps together imply that (i)-(iii) are satisfied by (xp, xj) for j < p and

the proof of 20 - 40 is complete. Now we turn to the proof of 50 . First we will establish

that W,,(a, b) =V is an ENR. Since D C Rk, by a theorem of Borsuk [12J, it suffices

to show that V is locally compact and locally contractible. By 40 of Theorem 7.2, at

any point z E W,(x), D locally is a bundle over W,(x) with fiber Y homeomorphic to

(W,(x)n{W.(y) I y > x})U{x}. Note that y > x means that W,,(y)nW,(xa) # 0. The fiber

.Y' is contractible using the decreasing flow. Since W,,(x) is a finite dimensional manifold,

z has a contractible neighborhood N in W,,(x). Therefore V is locally contractible at z,

the contractible neighborhood of z in V being N x .7', in a trivialization over N about

z. Furthermore by 30 of Theorem 7.2, V is locally compact since D = D. Hence ) is an

ENR.

To show that fb retracts by deformation onto D, let b, < '. < bm be the critical

values of f between a and b and x1,..., x,, the corresponding critical points. Each of these

critical points admits a neighborhood of the type

(7.56) IX12 + 1y[ 2 <
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for some ej > 0 where (X, Y) are local coordinates corresponding to a Morse Lemma

reduction, i.e. X is the coordinate along the unstable manifold E- and Y is the coordinate

along the stable manifold E + . We will also use Wu( r) and W,(xr) to denote E- and E + .

Further smallness conditions will be imposed on e4 later.

Let r(-t, .) denote the flow for ], t > 0. Consider the balls Bi,.. ,Bm' in the X,Y

coordinates around xl,..., Zm respectively. Let

(7.57) Wi =U 77(-t, Bi)

t>0

and

(7.58) U(e,...,m) U, U= W)U fa.

Each set Wi is an f dimensional manifold with boundary where e = dim M. This follows

since the set

(7.59) S!, = {(X,Y) I IX12 + jY12 = I,, X12 > (y( 2}

is a section for the flow for D which sweeps out W outside Bi via tr(-t,.).

Set

(7.60) W," = W\Bj.

Clearly W defines a tubular neighborhood of W,(zi), and hence a fibration over W.(xi),

the fiber being diffeomorphic to the disk D + = {(O,Y) I jyJ2 < 6}. If Ki C W"(x,) is

compact, ei may be chosen so that the diameter of the fiber remains small along Ki. It is

then easy to extend the tangent bundle to W,(xi) to Wi along Ki. In fact, as in (7.27)-

(7.28), we can assume that this extension has been carried out on a fixed neighborhood

U(Ki):

(7.61) gi: F(Kj) -+ U(Ki).
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The fiber of gli is diffeomorphic to the tangent space to /Vu(xi) and

(7.62) ji _ g-(Ki) -- Ki
g

1 (K,)

is the tangent bundle to W (xi) restricted to Ki. Now gi defines an orthogonal bundle

(7.63) g2i : (F(K,))' -+ U(K,).

If we are given another vector bundle G -- G(Ki) which is a subbundle of the tangent

bundle of M and which is defined in a set 0 C U(Ki), we can split G over F(Ki) F(Kj)"J%

The following notation will be used for this situation. If v C 0, v, E (G(Ki)), denotes a

vector in the fiber of G at z and v. can be written as v, = hz + k, where h, E (F(Ki)),

and k. E ((F(Ki))±).

To complete the proof of 50, t6e following result is required. Here R + denotes the

positive reals.

Proposition 7.64. There exist continuous functions 'P,..., t,, with pi : (R+) i -' , R +

such that if 0 < ei < 'i(ei ,.. , ei-) for all i = 1,...,m, then for any p-tuple (xi,,... ,Xi,),

bij +1 > bii, 7J =- 17,....,p, 1< p< m, we have

10 sup,_ 0 supEu inf{M(x, y) I y E f0a U {Wu(xi) I a < f(xi) < b}} = 0.

2 ° If xr dF = {xk E AC(f) I W,(xi.+l) l W( -- C } for some index j, then

30 Ifxi E F ,, 0 < j + 1 < p, then the sets (8W,,), 1 < : 5 p, intersect transversally.

Hence the intersection n=1 8Wij is a manifold M(e,ij,... ,ip) = M(e,p). Further-

more its tangent bundle contains a subbundle G(E,p) with the following property:

(7.65) im sup sup -F1 0(7.65) % il.... ,,,--0 z(,,P)nf-'(c) =0

and dim G. = dim W,(xi,) = dim(F(Kil)). In (7.65) c denotes a noncritical value

with c E (bi,- 1 ,bi,).
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We delay the proof of Proposition 7.64 for now and complete the proof of 5. By the

definition of UE, its boundary is made up of pieces of f-'(a) and pieces of &Wi. With

the aid of Lemma 7.64, the intersections of any number of these sets are transversal.

Therefore such intersections axe manifolds M(e,p). The closure of these manifolds may
have a boundary, e.g. if xio E Fi,, then M(e,io,i1 ,...,i,) is a boundary portion of

some part of M (e, p). On each manifold M(e, p), we may define an inward normal to U, as

follows: on aWin n.. n aWi, ,the tangent planes are independent. Therefore they intersect

transversally and define independent linear forms. We can pick one which points inwards

for each of the aWi, and thus for aU,. The same procedure applies if f-'(a) is added.

Since the set of inward normals is convex for each linear form, we may glue these normals

continuously and thus, even though U, is not a manifold, being made up of pieces of

manifolds, we can continuously define a vector field v along U, pointing inwards to U,:

(7.66) v :We TMd

z - -

where v. points inwards to U,. Using e.g. a tubular neighborhood of DU,, v may be

extended to all of 4 with v = 0 outside of a given neighborhood of OU,.

To be precise, we require that v = 0 in U, where e' = (e ,..., E') is such that

U, C int U,. Since all of the critical points of f between levels a and b lie in the interior

of U,, there exists /3 > 0 such that

(7.67) >I0(x)Il> 3>0

for all z c fbn (A4\U,,). Hence for 0 small enough, 4 - Ov is a pseudogradient vector field

for f in f-'(a, b). We may choose 0 > 0 such that

(7.68) f'(x)(D(x) - 9V(z)) 1_32

for all x E fb n (M\U,). Consider the decreasing flow p(t,-) for 4i - Ov:

(7.69) -(-tx) = IC( ) - O9(V), V(0,x) = x.
dt
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Given any x E f -(b), there exists a unique smallest t(x) such that

(7.70) p(-t(x),x) E Ue.

Indeed y(-t, x) must enter U since:

82

if q(-t, x) E fb fn (M \U,,). Furthermore since -b is either tangent to or points inwards

to U, and since Ov strictly points inwards to U , the trajectory cannot escape U, and

t(x) is unique and continuous. The deformation

(7.72) D : [0, 1] x fb . fb

D(7-, x) = V(-rt(x), x)

retracts fb by deformation onto U,.

In order to conclude the proof, we must show that U, retracts by deformation onto

D = W,(a, b). Since D is an ENR, the Cech homology of D and the singular homology of

V coincide [10]. We established that fb can be retracted by deformation onto UE, which

is a subset of a neighborhood of P. Since e can be made arbitrarily small, it follows that

the homology of fb is isomorphic to the Cech homology of D) and hence to its singular

homology. The above argument in fact shows that the injection of D to fb is a homotopy

equivalence since the argument extends to homotopy groups [10]. Thus fb and V have the

same homotopy type. This is enough for the purpose of this paper. Establishing that this

homotopy equivalence can be taken to be a retraction by deformation is more technical

and we refer to [15] for this point.

Remark 7.73. Taking c E (a, bl), the invariant set in the sense of C. Conley referred to

in Remark 7.3 would then be

fc U {Wu(x) I z E C(f), a < f(x) b}.
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We now conclude this section with the somewhat lengthy:

Proof of Proposition 7.64. Since the sets Wi are images by a decreasing flow map of

the Bi's, 20 follows on showing that

(7.74) fl"/,+, n Bi,. =

Since W,,(xi,+,) n W,(xi) -, (i) implies that

(7.75) Y(w-( ,,,),w-(X,,)) >P,+l," > 0.

Thus

(7.76) fL(W,,(Xi,+), W,(xi,')) >P,+I,, > 0.

Choosing

(7.77) fi, < jpr+1,r,

(7.74) follows from (7.76)-(7.77) if we can choose Ei,+, so that
1

(7.78) ti(x,W (X .)) < 1Pr+,r

for all x E Wi,+ , or if

(7.79) lim sup /(XW"U(Xi,+,)) = O.
i.+1 -0 X,.EWI.

Observe that (7.79) together with 30 of Theorem 7.2 implies 1' of Proposition 7.64.

Hence 1 - 20 of the Proposition follow from (7.79). Now (7.79) is a consequence of 30 - 4°
I

of Theorem 7.2 as will be shown next. The set Wi is obtained from Bi by using the flow

r7(-t, .) for t > 0. Consider a fixed ball B-(xi, p), p > 0 in E- about xi. It is clear that

for a suitable p independent of Fi and any x E Wi, x = (X, Y) such that X E B-(xi, p),

we have

(7.80) p (x,E) = ,(.x,W.(x:)) < E,.
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This is simply due to the local behavior of the flow r7(-t, .) which contracts the Y-directions

and expands the X-directions, i.e.

l78i m sup P(X,Wu(Xi)) = 0.
(i'--O z=(X,Y)EW i

XEB- (=i,P)

By (7.81), the same result holds on any compact set Ki C W.(xi). Indeed such a set

is covered by 77(-t(K,),B-(xi,p)) where t(Ki) E R depends only on Ki and p. Hence

for any x E Wi having z E Ki as base point in the fibration Wi --+ W.(xi) with fiber

diffeomorphic to S!':

(7.82) U(X,z) < ( sup JIDr1(-t, y)[p(77(t(Ki), x),r(t(Ki),z)) < C
t E [0,(Ki)]YEM4

where

c sup IID7(-t, y)1.
(t,,v) [0,,(K1)] ×.M

Thus we are left with those points x for which the base point z belongs to a neighborhood

of W,(xi)\W,(xi), i.e. of {W.(xj) I xj E F,}. We may assume that we start with

base points z E OK,, the boundary of a large ball in W,(xi) and thus, using (7.82) with

ei small enough since z belongs to a neighborhood of {W.(xj) I xj E F,, }, with points

x near {W.(xj) I xj E F,,}. Our goal is to prove that such points remain close to

{W(xj)I xj E F,} = {W (xj) I x j E F,} when they are subjected to the flow i7(-t, .).

Therefore we return to the situation we started with but with a lower index j < i. Using

a decreasing induction, at the last step we arrive at a situation where W,(xi) = W (xj);

hence the result.

Now we will prove 30. We claim the condition on the subbundle G(E,p)

(7.83) jim sup sup IIk.1 - 0
, ..... ~ -- 0 zEM (,p)nf-(c) v'EG. 11h.11

may be replaced by a similar one with the constraint f(z) = c replaced by the requirement

that z = (X, Y), IXI = p, IYI < p for a fixed p. To justify this, observe that the
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coordinates (X, Y) are local Morse reduction coordinates about xi. Since c E (bil 1, bi)

p may be chosen so that f(z) > c if z = (X,Y), IXI _< p, JYI <_ p. We know that as

1 f0,

sup P(x, W ) --- 0.
xEWi,

Therefore we may also assume that for any z E .M(e,p) which may be written in the (X, Y)

coordinates, we have IYI <1 p. Fo: ei small enough and z E m(e,p) n f-(c), the amount

of time t, needed by 77(t, z) to reach {(X, Y) I IXi = p, IYI < p} is bounded from above

by a constant C = C(p,c). Conversely if z' E .M(e,p), z' = (X',Y'), IX'I = p, IY'i :< p,

the amount of time, -t, needed by r(-t, z') to reach f-1(c) is bounded from below by a

constant -C(p, c). The map Dr7(t, .) leaves the tangent space to W.(xi) invariant.

Since any point x E Wi flf, is close to W,,(xi) and the time t needed to get from f -(c) to

Z'= (X', Y'), IX'I = p, jY'I <_ p is globally bounded from above, we may replace (7.83)

by

(7.84) lim sup sup Jlkzjj = 0.
fi ..ei

1  
-0 xEA1(f,P), vz EGz jlh -J

.=(xY) near .- l ;IX=,OJ :'5p

Now 30 will be proved by induction on p. For p = 1, Wi, is a manifold and we seek

a subbundle of the tangent bundle to aWi, which satisfies (7.84). Choosing ej, < p, let

(7.85) aS! = {(X',Y') near xj, IIX' = Y'i, X' I+ iY'1 2 =

The tangent space to aOWi at a point (X', Y') E 9S!', is the tangent space to this sphere,

i.e.

(7.86) {(h', kl)I X'. h' + Y'. k' = 0}.

Consider a point (X, Y) E OWi, such that

(7.87) lXi =p, IYI < P.
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In fact ?Y :_ ei < p. Such a point belongs to 8Wi, if and only if

(7.88) e tp = elX e JYJ =

e-e p = eIX =o e;, =Y (2

i.e. t ="-lo Y or equivalently if

(7.89) 77 log 2P 2I ,(XY) E aS,.

The tangent space at (X, Y) is the image under D77 -log 2-,) of the tangent

space at (X', Y') 7 1 log 3z'(X, Y)) to the sphere, i.e.

(7.90) (h, ki) - ( h', p 1k

where
1 /2 X h /2 Y.k =0

or equivalently

(7.92) {(hj,kj) IX' h + "Y. =01.

Since

(7.93) IXI =P; IYI 2p'

for any hi E E-, the vector

(7.94) h, - p- 2 (X " hl)Y

belongs to the tangent space to 9Wi,, at (X, Y). By taking the image of these vectors by

D1 (-t,.), t > 0, (7.94) defines a subbundle of G(ej,,ii). Furthermore if (X,Y) E iVi,

and IX] = p, then IXI = p, JYJ =L and setting

(7.95) v(x,y) = hi - p-2 (X " hl)Y,
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we get

(7.96) <' l< - < p XlYj <C 2 j

where C is an upper bound for the norm of the projection from E+ = W,(xi,) onto

(F(Ki,))±. We do this in order to conform to the precise definitions (7.61)-(7.63). Other-

wise we could simply take (F(Ki,))-_ = E + with a suitable scalar product, Ki, = {(X, Y) I

IXI = p, (Yf < P}- The inequality (7.96) implies (7.83) and (7.84) and hence the induction

for p = 1.

Now we give the argument for arbitrary p. We start with (xi,... Xip), Xi, E F ,k+l,

M(e,p) is a manifold, the intersection of the sets 9Wi,, j = 1,... ,p is transversal, and

the tangent bundle to M (e,p) contains a subbundle G(E,p) satisfying (7.83) or (7.84) near

Xi,. Now we add another critical point Xi, E F,,, to this family. It has a related Wi, and

ei0 . We want to study

(7.97) .M(e,Xi0,... •,X0i) =._M(E,p) = -- (e,p) n oWi,.

We may always assure, without loss of generality, that there is no critical point z such

that z E F, and xi, E F,. Indeed, should such a z exist, we could take it to be our

present xi 0 . Proceeding in this way, by induction on all the possible intermediate elements

Z1,, - = xi0 between xi, and xi, (zi E F,.+,, zi maximal in F ),+,), we would

establish 30 of Proposition 7.64 for the whole chain of indices. The statement for the

subchain (i 0 ,..., ip) follows immediately.

Therefore, in the sequel, xio is maximal in F.r,, i.e. there is no z such that z E F,,

and xi, E F,. Let (X,Y) be local Morse reduction coordinates near xi, and (X',Y') be

Morse coordinates near xi,. Let p > 0 be given and let

(7.98) K = W- (xr,)l {(O,Y) I IYl = p}.

Let

(7.99) O(K ° ) be a small closed neighborhood of K" which does not contain xio.
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Let

(7.100) ( {(X,Y) I IXI < Y, 1 +XI2 +Y 2 =f)

and let K' C W,(xi,) be:

(7.101) K' = {(X',0) I JX'j = p}.

The set K' is a section to the flow restricted to W,(xi,) and thus, for any z E K 0 , there

exists t(z) > 0 such that:

(7.102) 17(t(z),z) E K'

where t(z) is bounded by a constant independently of z:

(7.103) t(z) < C(p).

By continuity, we may assume that, if O(K0 ) is compact and small enough, then there

exists a compact set containing K1, O(K'), such that, for any z E O(K0 ), there exists

a t(z) < 1 + C(p) such that i(t(z),z) belongs to O(K'). It is not difficult to see that we

may take

0(K 1) = {(X', Y') I IX'j = p, IY'I _< p}.

Since 0(K1) is then transverse to the flow, t(z) is uniquely defined.

Our induction provides us with a subbundle G(e,1.... , ei,, xi, .. . xi,) of the tangent

space to M(e,p), with a fiber having the dimension of W.(xi,), such that (7.84) holds

on O(K'). The tangent space to M(e,p) at z E M(Ep) n O(K ° ) is the image under

D77(-t(z), -) of the tangent space at r(t(z),z) to M.(Ep). Setting

G,(e,p) = D7(-t(.), .)(G(E, p)),

then Gj(e,p) is a subbundle of the tangent bundle to M(e,p) on M(e,p) n O(K°), the

fiber of which has the dimension of W.(xi,). G(E,p) satisfies (7.84) on O(K');
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D77(t,.) g(.,,) leaves the tangent space to W.(xi,) invariant; and t(z) is bounded by

from above 1 + C(p). Therefore, Gj(e,p) satisfies condition (7.84) on M(e,p) n O(K ° ) i.e.

there exists an extension F(O(K°)) to O(K ° ) of the tangent bundle to W.(xi) on KO

such that any vz E (G 1 )=, the fiber of G, at z E M(e,p) n O(K), splits: v, = h, + k,,

E (F(0(K°)))z, k, e ((F(0(K°)))')z with h and k. satisfying (7.84) uniformly for

z in M(e, p) n 0(K 0 ).

Since the intersection of Wu(xi,) and W,(xi,) is transversal strongly and uniformly,

if O(K) is small enough, there exists a a > 0 such that for all z E M(e,p) n O(K°), the

tangent space to M(E,p) at z contains a subspace of the form

(7.104) {(h 1 ,Bzh 1 ) I hi EE-,B E C(E-,E+),IIB.1I < a}

with o, is independent of z. Here E- = W,(x,0 ) and E+ = W,(xi,) so the subspace given

by (7.104) is a graph over W,(xo).

Observe that if eio is small enough, any z E M'(e,p) is such that

77(t, z) E m(E,p)fnO(K1) for a suitable t. Indeed points in M(e,p)lDW,0 are images under

n(-t, .), t > 0 of points in M(e,p) n (Su)+ and such points are clearly images of points in

M4(E, p) n O(K). The tangent plane to &Wi0 at a point z = (X, Y) E M(e,p) n (S, )+ is

(7.105) E. = {(h 1 ,kj) I X. h, + Y- k = 0}.

If z = 77(-t, (X, Y)) and E - (X, Y) E M(e,p) n o(K 0 ), then

(7.106) (X,Y) = (etX,e-tY), t > 0

and by (7.104), the tangent space at z to M(e,p) contains a subspace of the type:

(7.107) =H - {(eth,e-Bjhi) I hi E E-,B zI ! o,}.

O(K ° ) is fixed, compact and such that xi 0  O 0(K 0 ); ejo can then be chosen so small

that t, in (7.106), is large uniformly for z E M(e,p) n (S,) + . Observe that the flow
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preserves M(E,p) and is transverse to 9Wo on (S9o) \8S!' (see (7.105)). Therefore, the")\~O O aS (7.107) defines
intersection of these two sets is transverse on (Si-)+\aSo. On (0 7

vector space transverse to the tangent space to 9Wi. Indeed (e t X, e-tB;X) is in this

vector space, while, since lxi = lYI,

(7.108) IX. e t X + Y. e-BSX[ - jetjX12 + etY . BjY

_ etIXl2 - e-aIXl > IXl2 (et - oe- ) > 0

for t large enough. Thus, the intersection of M(e, p) and OWio is transverse along (S!')+

and is therefore globally transverse since any point of M(e,p) n OWi, is obtained from

M(e,p) n (S!,) + using the flow.

We now define G(ei 0,... , e,, Xio,... , xiP) and prove the second part of 30 in the form

(7.84). By definition, the fiber (G.) at z E M'(e,p) n (S!)+ is:

(7.109) G, = orthogonal projection on T of (7"H- E R(X, -Y)).

Observe that 'H, E R(X, -Y) is a direct sum: (X, -Y) cannot belong to N, because

fYf - fXf on (S!0)+ and because t in (7.106) - (1.107) is very large. Furthermore, as we

have seen above, '7-(, E R(X, -Y) is transverse to T, which is the tangent space to OWi0

at z E (S!') +. Extending G to M'(E,p) via D(-r, -), r > 0, we obtain a subbundle of

the tangent bundle to M'(e,p) of dimension

(7.110) dim(G(eio,...' i,,xio, ... xip)), = dim E- + 1 - 1 = dim W.(xio).

G,- may be expressed in another way if z E M(e,p) m Si0. Setting z =(X, Y) 7(-t,

i = (X, Y) in M(E,p) n O(K), we introduce:

(7.111) 7- = {(e'(h1 - vX), e-B(h - vX)) I hi E E-}

where

etX .-hi + e-t.Bh . Y
etlX 2 + Y, e- t BjX
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Observe that 7( is tange-.t to M'(e, p) since it satisfies (7.105) - (7.107) G. may then be

described as:

(7.112) G,, = -H' R(x, -Y)

since (X, -Y) is tangent to M'(e,p) along OS'. In order to prove (7.84), we observe again

that

M'(e,p) nf {(X,Y) near x, o I JXJ = p, JYj _< p}

is the image under 17 of M'(e,p) n aS , the time r needed being very large, -r oo as

Cio --+ 0. We set

( z1 = (e"X, e-Y), (X, Y) E M'(6, , so
z1 E M'(E,p), eClXl = p, IXJ = IYI, IX12 + lYj 2 =,Eo

The fiber of G(e o,.. ,io,... ,xi) at z1 is

(7.114) (er+t(hi - vX), e-("+t)B,(h, - vX)) e R(e"X, -e-Y)

where

(7.115) -r+t>Tr=log P =log F2p----+oo as i-o.

Equation (7.114) can be written as

(7.116) (er+th, e-(r+t)Bi(hi - vX) - e'-vY)

since (7.116) defines a space of dimension equal to dim W, (xio) contained in G(e, 0,... •, ,xi, I xi"'

Since JXJ = jYJ, (7.108) and (7.111) imply:

(7.117) 1 v4Xj + vJYJ 1< 311hll

for ej, small enough. Therefore if v. = (er+thl, e-(+t)Bi(hi - vX) - et-vY), and if we

take, for the sake of simplicity, E- E E+ for the decomposition of v, = h. + k., we have

(7.118) I__!< le-(r+')Bi(hi - vX) - e'-rvYlII(1I - er+tllhill

e<+ t 11hill -
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uniformly as ej0 -' 0. As can easily be seen, (7.84) can be written with such a splitting

so (7.84) holds for G(e 1 ,... , Cip, xi 0 ,. ip). Thus the induction is established and the

proofs of Proposition 7.64 and Theorem 7.2 are complete.
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§8. The Retraction Theorem and Related Results: The infinite dimensional

case.

In this section, the results of §7 will be extended so as to apply to the functional I

introduced in §4. In the process a set of critical points at infinity for i will be introduced

and its stable and unstable manifolds relative to the pseudogradient flow generated by Z

will be characterized.

The notation of §4 will be used freely here. Again IC(I) denotes the set of critical

points of I, etc. We henceforth take el as in Proposition 2.9 and assume

3

(8.1) 031 < min{Ib -cl lb : c E I(OC(I))u( U Ji2 (C(J,,))
i:Oj=l

and b,c < M + 1}.

Also let WVV(ql, q2), W,(ql, q2 ) denote the stable and unstable manifolds corresponding to

(ql, q2) E kA(J 12), etc.

Theorem 8.2. Let f be as defined in §4. Then

10 Any trajectory of (4.23) with q(O) E fM+I which does not enter I" - Ie or does not

converge to a critical point of I has a limit. The set of limits, 7, can be written as

3

ij=l

where

U;,q, )EKCo'H3

20 In the (ql, q2, Q3) coordinates,

{( 172)} X {Q3 E R' I1Q3 2 +q2i (+1 1)1/2}.

where (1,E) )'12'

30 / 12(71,q 2 ) possesses a Frehbolm stable manifold, ,V(7 1 ,7 2), and a finite dimensional

unstable manifold, W ( 1 ). These manifolds can be characterized in (qi, q2 , Q3)

coordinates as:
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a. UV (7, ')\int I" is a bundle over Wu( i,12 )\int J12-O3 with fiber F(q,q 2 ) over

(qj, q2) given by

F(q,q 2 ) = Q R I IQ3 - [ql +1}

b. Let c = J 12( x, 2 ) and 0 < e < 3(cl). Then

wo(71,; 2) n lc+, U Goo ( 1 , 2)

where G'(q1 7 2 ) fibers over W,(71, 2) n J1+1 with fiber at (qj, q2) given by

G,(ql,q2) = {Q W 1' 2 i IQ3 2dt + <1 + < -- (ql + q2)]] -

40 20 and 30 hold for any ij.

50 In any C' neighborhood of I', there exists a perturbation L of P possessing the

following properties:

a. L= in122(ij), z 34j.

b. L is a pseudogradient vector field for I.
c. For any q E V4+1 and (7j,7j) E Ku+', the stable manifold Wsoo(-qi, 7j;L ) for L

through (7,,7j) is transverse to W,,(q; L).

d. For any 4 E .M+1\{q} Wu(q;L) is transverse to W.(d;L).

e. For any (Cu,\) 1 qi, q)}, W ('j,'qj; L) is transverse to W O  L

60 The set 1M+' retracts by deformation onto

'WOO U V-F(DM+l)

where
3

VM+,= U W.(q), VM+l= U U w(7,,T),
qE/C

m +
l ioj=l (i7j) 7 i ) +1

I'l U M+ C int WV C CW 1)2,

W' is piecewise smooth, and V,(DM+,) is a small neighborhood of DM+I. Moreover
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a. W- retracts by deformation onto I" U D'M+17

b. V,5(Em+1 ) and v,(DM+) n i °O are ANR's.

c. DM+ is an ENR of dimension m and the homologies of V,(DM+l) and

V,(L'M, +l n WI) vanish in dimension larger than m.

Remark 8.3. (i) On the basis of 5", we can assume Z L and our original stable

and unstable manifolds W(q), W,(q), W (q), etc. have transversal intersections. (ii) A

stronger result than 6' is valid: 1M+1 retracts by deformation onto I" U D'M+ 1 U VM+.

See Bahri [15].

Proof of Theorem 8.3. Let us recall the construction of , given in §4, in particular

(4.15)-(4.23). First Z12 was chosen to be a pseudogradient vector field for J 12 such that the

stable and unstable manifolds for Z 12 in the region e1 <- J 1 2(q) -< M + 1 have a transversal

intersection. Points on the unstable manifold between levels ci and M + 1 satisfy (4.15).

Then Z was defined in (4.20)-(4.22) as follows:

d
(8.4) -T(q,q2,q3) = -- '12 -(1 -W 1 2 )1' -2

where Y12 expressed in the (ql, q2, Q3) coordinates in V2(1, 2) is given in component form

by

(8.5) (i) q2) = -Z 2 (ql,q 2)
= -

d
(10 (Q3- [Q.31) = -(Q3 -[Q1

d) r -Q -- (ql + q2)]

d~Q 2 _ _ _(iii) -([Q3 - -(q + q 2 )]) = (1- '2) [Q3 l(q I + q1)]2
d7 2 Q3-Lq+q21

Now we will prove 1' - 2' of Theorem 8.2. We first want to describe the critical points

at infinity of I, i.e. by Corollary 4.42, the limits of decreasing trajectories for (4.23) which

remain in V1,(1,2) for large r. On VI,Z = Y12. Therefore we are dealing with (4.21). Let

q(r) = (ql(r), q2(-), Q 3(r)) be a solution of (8.5) for 7 > 0 such that el - I/(q(r)) _ .

We claim (q 1(-), q2 (r)) converges to a critical point (71,72) of J1 2 as r -* o provided that
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J1 2(ql(r),q2 (r)) 740 . Since on V 1 ,

(8.6) i(q) = J12 (ql,q 2) + f la 3I2dt +

we have

(8.7) J12(ql(-), q2(r)) >i(q(-)) -OC)> AC,
2 -2

Choosing ,3(C,) < El, (8.7) implies

1
(8.8) J12 (ql(r),q2 (r)) _ -6

for all r > 0 such that q(r) V 1V. Hence as r -- , 0 (qr),q 2 (7)) converges to a critical

point ( 1 2) of J12 with

(8.9) El < J12:( I, M M+ L.

By (8.5) (ii),

(8.10) IIQ13142(7) 0

as r - OC. Since (q (r),q2(r)) -+ (71,72), for large7 we have

2 1 C,

-[ql + q](r)ljL- <  -
:=1

Now consider (8.5) (iii). It shows

I[Q3 - i(qX + q2)](r)l 2

is nondecreasing as r -+ oa. Combining this observation with (8.10) implies

f dt + >1

d 1 + {ieQ -(q, + q2 )](r)F0

as r - cc. We claim 1i > 0, for if//= 0, then for large r,

(8.12) jQ 31 2 ( +

lQ31 t + 1 + I[Q3 - +(q, + q2)j 2(r)I

80



Now (S.11)-(8.12) imply that (qj, q2, Q3)(r) E Vo for large r. Therefore (1- i 2 )(q(r))) = 0

for large 7 and (8.5) (iii) implies

d
(8.13) 77 ([Q3 - 2(ql + q2)) = 0

for large 7, contrary to A = 0. Since pt > 0, (8.12) shows we have

(8.14) Iw(r)l = IQ3 - (q 1 + q2)](r)1 _( - 1/2

for large r. By (8.5) (iii),

ld
(8.15) I Wr w(r)12 = (1 - (712)1W1(7).

Since q(r) e V1, we have

( S .1 6 ) 1 j l ( 7 )  <  --l --

for large r. Thus if ,(C 1 ) < 2,

(S.?) Iw2O-) -
- 1)1/2 - O > 0.

Using (8.15), we get

(8.18) WI2(r) > 2 
' 1  (1 C12)d-

for r > r0 and 70 large. Combining (8.14) and (8.18) yields

(8.19) j(1 - 12 )da < oo.

Hence by (8.5) (iii),

(8.20) -wjdr < co.

Therefore w(r) = [Q3 - (qi + q2 )](r) converges to a limit woo as i -r oo. Clearly

1 - f,"12q(r)) then converges to 0. Therefore

(8.21) 1 I <
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via (4.16). Lastly observe that by Proposition 2.9', any critical point of J 12 satisfying (8.9)

will satisfy

(8.22) 1l :5 J1 2(lg)- M + 1

if el is small enough. Now (8.9)-(8.11), (8.20)-(8.22) imply that the limits as r -- oo of

the trajectories we axe studying lie in -H12 where 'H12 was defined in 10 - 20 of Theorem

8.2. Conversely, any q E R 12 is the limit as r -- oo of an orbit of (8.5), namely the one

with initial data q. This proves 10 - 2' of Theorem 8.2.

Now we study the "stable" and "unstable" manifolds W 0 ( ,,g 2 ) and W *M,()

corresponding to points in 1 2.We begin with Wf(' 1 ,g2 )\int P.

(8.23)TV( 1 ,7 2)\int IPq(r) ={(qi(r), q2(r), Q3(r)) q(r) is a solution of

(8.4) whose limit set as -r - -c has a nonempty

intersection with H12 and I(q(,r)) >_ e1 for all r < 0}.

Arguing as in the proof of Corollary 4.42, there is a r0 so that if r < r0, q(r) E V1.

For such r, q(r) may be expressed in (qi, q2, Q3) coordinates and (8.5) holds for r < ro.

When r E (-c, r0 ) decreases to -cc, (8.5) shows that )jQ31)L2(r) is nondecreasing while

Q3 - [Q.3 tends to 0 as r --+ -co. Hence

(8.24) [1Q3J1L2 (r) = 0

for T < T0. Similarly I[Q3 - I(q, + q21)1(7) is nonincreasing as 7 -- -cc in (-cc, r0) while

I[Q- (q, + q2)11(-00) > 1 - 1

so

1
(8.25) 1 + I[Q3 - (qi + q2)l12 (r)
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for r < 70. Thus

(8.26) j 3 12 1T) + <Q 01I(q 1 + q 2 )(r) 2

for r < 7 0 . On the other hand, (qi(r),q 2(r)) E W,( , 2 )\int J1 '-Ot the unstable

manifold of Z 12 at (q 1 ,q 2 )- Consequently

(8.27) [qi - q2]r)L __ 4

for r < ro by (4.15) and the choice of Z 12, Cl. (See (4.17) and the following paragraph.)

Inequalities (8.26)-(8.27) imply that q(r) E V, forr < r1 where 7l > ro. Therefore 70 =o,

i.e. if q(-r) E W.( , 2 )\int I", then (8.25) holds for a E (-00,co) and

(8.28) (ql,q2) E Wu(ql, 2 )\int J"-#ii

(8.29) IIQ31IL(7) = 0, i.e. Q3(r) = [Q3](r) E R t ,

(8.30) - < 9,
I I[Q3 - (q, + q2)] 2 (r)

i.e.

I[Q3 - (q, + q2)]kr I N >/

Therefore W,'(71,i 2)\int P, fibers over W"(7 1 ,'?2)\int J12f' with fiber F(q,,q,) as stated

in 3'a of Theorem 8.2. Furthermore since W 12 = 0 in V0, the flow ed to W ( l, 2 )\int If

has a nice representation:

d
(8.31) 7-(ql, q2 )(r) = -Z 1 2(ql, q2 )(r)

Q.('r) = [Q(r) E R'

Qa - -(ql + q2)](r) -= constant independent of 7.

These equations show each orbit in W (7 1 , 2 )\int I" converges to a point in ?1,2 as
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Now we will describe (locally) the stable manifold W(7 1 , "q2) which we define via

(8.32) W7( 1, 2) {q(r) satisfying (8.4) 1 q(r)converges to

an element of 712 as r --- 0o}.

As was the case for W ( 1,72), we could have started out with solutions of (8.4) whose

limit set, as r -* co, has a nonempty intersection with 7112. However the analysis of

critical points at infinity carried out in (8.6)-(8.21) shows that such trajectories converge

to an element of 712. Thus (8.32) is an acceptable definition for W;0( l, 2 ). For any

q(-r) E W (q1 ,q2 ), there exists -ro such that

(8.33) q(r) E V1  for r >_ -o.

For such r, q(r) satisfies (8.5) which implies

(8.34) (qj,q 2 )(7) E W.( 1, 2 ) for 7- > ro.

Let us consider a neighborhood , of (V', 2) in W ,(V1, 2) having the following prop-

erties:

(i) Z is invariant under the flow

d
(q=, q2) -Z 12 (ql,g2)

for r > 0.

(ii) For any (qj, q2 ) E Z,
2 C,

E llti- 2[q1 + q21rf L- < 2"
1=1

Since by (4.15),
2 C,

±iiyi - jfq + V2 11JL- -4

such a set E can be found. Clearly for any q(7) E W (q1 , V2 ), there exists a r, > 0 such

that

(8.35) (q,, q2)(r) G E for r > r, > '.
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Moreover since 7 1 r0, we have

1 f 1  1 +< (C1 )

(8.36) 5., j( 2 (r)dt + 1 + I[Q3 - 6(q, + q2)l]=(r) 2

for 7 > 7 1 . Using (8.35)-(8.36), the analysis carried out in (8.6)-(8.21) holds and any orbit

of (8.4) satisfying (8.35)-(8.36) lies in W.,( 1 , 2 ). Observe that if

(8.37) (qj,q 2 )(0) E E

and
I 1 fl 1 P(C)

(8.38)- IQ3(°)dt
(8.3) 2 J+ 1 + I[Q3 - I(qi + q2)]12(0) 2

then by properties (i)-(ii) of E, if q(r) = (ql(r), q2(r), Q 3 (r)) is the solution of (8.4) with

initial data q(O),q(r) satisfies (8.37)-(8.38) for any r > 0. Indeed (8.37)-(8.38) show (8.4)

has the form (8.5) for small r > 0. Hence properties (i)-(ii) of E and the fact that the left

hand side of (8.36) is nonincreasing with r via (8.5) imply that (8.4) has the form (8.5)

for all r > 0 and that (8.37)-(8.38) holds for any r > 0 with such initial data.

Now (8.33)-(8.34), (8.37)-(8.38) and our above remarks show that W;O(-l,? 2) can be

described locally as a bundle over E with fiber H(qt,q2 ) where for (ql,q2) E E,

(8.39) H(q1 ,q2 ) = {Q E w 12  0 j IQ3Vdt + 1+ I[Q - 1( < (2(q + 1K)3l -

Let

(8.40) c = J12(7,,2).

We will make a particular choice of E. Let

(8.41) E = E() = {(qi,q2) E W,( 1,7 2 ) I J12 (?,1 '2 ) < c + e}

Certainly (i) hold for small f. Moreover since (',2) satisfies (4.15) and E(,) - (q1'q2)

in W1,2 as e -, 0, a fortiori E(E) --+ (',) in L'C and (ii) follows for e < F where E2

depends on C, (and M). We can further assume that

(8.42) 3(C1 ) < E2(C1)
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for all )C ACMi1. Let

(8.43) 0< < 8(Ci)
9 2

and set

(8.44) W;(e)( l,,2) {q E W,(Vl, 2) I 1(q) < c + e}.

Dropping the (71, q2) for convenience, W (e) is clearly a connected neighborhood of 712

in W; (q, V2 ). We will describe W, (e) V 1. On 11,

1 f' id 1
(8.45) i(q) = J12(ql, q2) + J ,Q 3  1 + 1Q+

and the flow has the simple form (8.5).

Consider the following set:

C1 ={q(O) E W*(e) I the solution q(T) of (8.5) remains in V1 for all

r > 0 and (qx(r),q2(T) E Z(E)}.

The argument used above in (8.34)-(8.39) shows that if q(O) E T (e), there is a To > 0

such that q(r) E Ci for T > ro. We claim that in fact q(T) E C1 for all r > 0, i.e.

(8.46) W;(E) = C1 .

Indeed assume that q(r1 ) E C, and q(r) E Ci for r > 71, r, > 0. Since (8.5) holds

on [rI,oo), (ql(Tr), q2(71)) E W,(V', 2). Since (8.45) holds and since q(r 1 ) E int l+,

(i- > 0), (qI(rl),q2 ('l)) E Vn( , 2 )i lnt J 2,,+, and hence (q1(Tr), q2 ,,)) E int E(e).

Therefore q(ri) E 9Vi (since q(7l) E 8C1 and (ql(Tl),q2(r)) E int E(e) and hence

(ql(7 1),q2 (Tr)) M"(e). This implies that either

2 1 C

7Iq: - -[q, + q2j11LO -2C2

which is impossible by (ii) of the definition of E(e) or that

T(Q) = --l-- >e
2
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which is also impossible since then

(8.47) I(q(T1 )) > c + P(Ci2) > c- C,
2

a contradiction. Hence (8.46) holds.

Using (8.45) and the definition of C1 , W,(e) is a bundle over E(e) with a fiber as

described in 3°b of Theorem 8.2. Moreover W;*(e) is a Fredholm manifold. indeed E(e)

is a Fredholm manifold since J12 is Fredholm and proper near (71,g2). Thus Z1 2 may

be chosen to be Fredholm and proper near (4112). The set G(q,,q2 ) is also a Fredholm

manifold and W;(E) inherits this from the product structure. This completes the proof

of 30 (and 40) of Theorem 8.2.

To obtain 50 and 60 , a few preliminaries are needed. Note first that if

(8.48) 2<  <  T

then WV(e) is a uniform neighborhood of R12 in W;(g 1 , 72 )- Indeed if q E 7"12,

1

(8.49) i(q) = J12 (7 1;4 2) + I + 2LQa 1- + 7 12 < 1 < C +- E.

Observe also that (8.5) holds on W,,(e) and provides us with the following information

about the behavior of the (decreasing) flow restricted to W"'(e):

(ql, q2) = -Z 12 (ql,q2) (ql,q2) E E(e)

(8.50) Q3(r) = e-Q3(0)

w(r) = [Q3 - -I(q1 + q2)](7) = A(r)w(O)

where A(r) converges to a limit v as r -- co such that IJ, >_ (1/31)-l - 1)1/2. Lastly

observe that a Morse Lemma is available around R"12 for Z in the following sense: Let

. 1 C -i C int .A2 C XN be neighborhoods of (7,, 2) in A12 such that

(8.51) Z 1 2(XY) = (-X,Y)
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in ,V2 where (X, Y) are coordin -tes along W( 1,, 2) and W,(71, 2) respectively and

2
1 Cl.

(8.52) J Iq - [q, + q2L < 2

for all (ql, q2) E Xi, i = 1, 2.

For i = 1, 2, let

(8.53) Wi= (ql,q 2 , Q3 ) I (ql,q 2 ) E A'i and 4D12(q1,q 2, Q3 ) -

Then by the definition of cD, 2, Wi C V1. Moreover since cZ12(q) < on W2 \WA21 , by the

argument of Lemma 4.14, there are constants -y and K 1 such that

I'(q)2(q) > -Y > 0
(8.54)

112(q)IwI,, 
< K1

for all q E W2 \Wl. Furthermore, (8.5) holds in W2 and shows that if q(r) is a solution of

(8.5) such that q() E W2 for 7" E [0,7o], then q(r) =(X,Y, Q3 )(r) with

X(r) = e'X(O)

Y(r) = e rY(O)

(8.55) eQ3(O)

W(7) [Q3 - 2(qi + q)1(r) = X(q(-r))w(O)

where
-A(q(r)) > 0 and 0

if and only if dist (q(7), V0) -0 0. Now (8.54)-(8.55) show that W2 has similar properties

to neighborhoods of critical points for functionals satisfying the Palais-Smale condition.

Indeed the explicit formulas of (8.55) show (PS) is satisfied in W 2 along any given

trajectory. Moreover W 2 is a neighborhood of Hi12 on which , has the reduction provided

in (8.55) which splits along the (ql, q2, Q3) coordinates yielding a product structure for the

flow corresponding to -Z.
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As a last preliminary observe that if '2 is small enough, KV2 C K((p) as defined

following Propositioa 4.2 and any solution (ql,q 2 )(r) of (8.5)(i) starting in A( 2 satisfies

(8.52) for any r such that J 1 2 (q 1(r),q2(r)) _. This implies that (8.5) holds for any

decreasing flow trajectory q(-r) starting in W 2 as long as i(q(-r)) ei (and therefore

J1 2 (ql r),q 2(r)) > I since 3(Ci) < el; see (8.5)-(8.7)).

Now we are ready for the proofs of 5 ° - 60. These proofs are essentially the same

as those of 20 and 50 of Theorem 7.2. However there are a few differences which will

be indicated next. The proof of 20 of Theorem 7.2 relied on a two step induction. In

particular, recalling the idea of the proof, given two consecutive critical values cl < c 2 with

corresponding critical points x1 ,X2, W,(xi) and W,,(x 2 ) intersect transversally, strongly

and uniformly. This insures that if co < ci and W,(xo) intersects W,(xl) transversally,

then W,,(X 2) intersects W,(xo) transversally in a neighborhood of Wu(xI). Therefore if we

want to guarantee that W(x 2 ) intersects W,(xo) transversally, we need only take care of

a part of W (X 2) which does not lie in a neighborhood of W,,(zi). Since we are interested

in W,(X2 ) n W,(xo), we may consider W,(x 2 ) n f-(c) for c E (co,c 1 ). Then the part of

W,(x 2) n f -(c) which does not lie in the given neighborhood of W,(xl) is compact and

making it transversal to W,(x 0 ) follows from the standard transversality theorem [16].

As in the proof of 20 of Theorem 7.2, in order to insure the transversal intersection

in the strong and uniform sense of W,(x 1 ) and W,(X 2), or W,(xo) and W,,(xl), (PS) is

needed outside of suitable neighborhoods Oi of the critical set including the critical points

at infinity. These neighborhoods should be small enough so that they do not intersect a

level set f- (c) for a fixed c between two critical levels. In order to guarantee that the

strong and uniform transversal intersection of W,(xo) and W,(x 1 ) implies that of Wl(xo)

and W,(X 2 ) in a suitable neighborhood of W,,(xl), a Morse Lemma is needed for the flow

in the C,'s. Since (PS) is satisfied outside the Oi's, the part of W,(x 2) which is then

left intersects f-'(c), for c E (co,ci), in a compact set. Thus our induction can continue

Neighborhoods Oi are available for our present framework, i.e. for f between the levels E
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and M + 1, at least to the extent that (PS) is satisfied outside of these sets. The sets

V2 defined in (8.51)-(8.55) can be used as the Oi's for critical points at infinity. The fact

that the flow ,7(r, .) is Fredholm and locally proper near the remaining critical points in

-1(el, M + 1) provides Ci's for such points.

Now we will be more precise. Let c, c' E [e1 , M + 1] be noncritical values of I. The

critical points at infinity, i.e. sets of type 7 12 provide us with a continuum of critical

values for 2. Namely corresponding to ( i, j), we have Jij(-i,lqj) + e for any e E [0,,13].

This is, of course, an artiface of the method we are using which introduces a vector field,

Z, with a hyperbolic manifold of rest points at each level where (PS) fails. Nevertheless

we will argue as if this manifold were a single point. The hyperbolic structure displayed in

10 - 20 of Theorem 8.2, in (8.31) and (8.55) allows us to do so. For the sake of precision

note that a noncritical level c will either satisfy c > Jij('qi,'q) + 01 or c < Jij Since

01 satisfies (8.1), these critical interval levels do not overlap.

For any classical critical point, , of I and in particular for those in I- 1 (EI, M + 1),

W,(,V) is finite dimensional. Therefore if c' < f(T) and is larger than the next critical

level of I, ,V,(V) n l-(c') is compact. Since (PS) holds outside {Oi}, the first step of

the induction argument of 20 of Theorem 7.2 is possible for . This ensures a transversal

intersection of Wu(V) with W,(T') or W ( ') at the next critical level since in both cases

(W, or W;*), we will have to ensure the uniform and strong transversal intersection of a

compact manifold with a Fredholm (possibly unbounded) manifold. Given another critical

level c" < !( ) which corresponds to a classical critical point or to a critical point at

infinity, the same argument guarantees the strong and uniform transversal intersection of

W,( ") or W;(T') with the trajectories originating in W,(V) n 1-(c') which ao not enter

the Oi's between the levels c and c'. Here c" < c and c is less than the next larger critical

level. Thus the first step of the induction argument of 20 of Theorem 7.2 is available

for classical critical points. The second step is also, since it relies on a Morse reduction

about a classical critical point. This is available here by the local properness and Fredholn
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character of P and Z.

Thus we are left with critical points at infinity. For such points the following direct

argument shows that both steps of the induction procedure are available. First observe

that for any ( , n) ad ' such that

1  I(') < (, M < M + 1,

(8.56) w , w,(') = o.

Indeed (8.31) shows that the decreasing flow, restricted to WT(Vi,Vj) splits in the prod-

uct structure between , and the fiber with [Q, - !(qiqj)](r) constant .

Moreover [yJ > (1/,Oi)- - 1)1/'. If /1 is small enough, this fact implies (8.56) for then if

-' has the form T Q r),

(8.57) (81 -1) > 2[,-57 q )l

while if ' cannot be so represented, no constraint is needed for 01.

The remaining case to consider is where the indices ij ae the

same for these sets since the sets " 1(i,j) whicn contain W0('q,'qj ) are pairwise disjoint.

Using (8.31) again shows Wo(Ti,7)n W (VI, qlj) is a bundle over W=(,Tq) n W,,)

described via

(8.58) fV ),q) = {(qi, qj, Q,) I (qi,qj) E w.(q, j)n w.(qfl I )

and I[Q, - 1(qi + q)] - - 1/2}.

Since 7,j) and W,(qi, -) are assumed inductively to intersect transversally, strongly

and uniformly, ) and W also do so. Observe that the transversality

occurs in the base of the bundles W* and VV, not in the [Q,] fibers. Now recall that we

chose AV2 C X%/(p) so that any decreasing flow trajectory starting in a set W2 satisfies (8.5)

as long as I(q(ir)) > E. This fact, together with (8.55) aad the transversality in the base
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of the burdles which was just pointed out implies that the second inductive step is also

available for critical points at infinity: if W ( ) or VVc(7) intersects Wo(7') transversally,

strongly and uniformly, between the levels el and M + 1, then W,( ) or W,*(J) will

intersect ary other WVo( ") transversally, strongly and uniformly in a neighborhood of

Wlfc(' ,rovided that W (q') intersects W; (q") transversally, strongly and uniformly.

Thus we have 50 of Theorem 8.2.

Now we turn to 60 of Theorem 8.2. It is almost simpler to prove it here than in

Theorem 7.2 due to the representation we have for the flow at infinity, in particular (8.31).

However a complication is created due to that fact that 30 of Theorem 7.2 does not hold

here. Property 3' was used in both the ENR and retraction parts of 5' of Theorem 7.2

so we must study this situation carefully.

To see what harpens to 30, we consider a simple case where q E k(I) and the largest

cA.tical value c smaller than Y(q) occurs at oc, i.e. 2 has a set of rest points, say H 12 (qlq 2 )

with stable manifold VV( ,'2) and J 12 (7 1 , 2) = c. Let 13i < < '3(c,) and consider

W,(q) nf W0(71, 2 ) -1 (c + e). Our assumptions on e, I(q),c imply that 7 12(qIq2) C

1'+10 . Moreover W,(q) being finite dimensional, W,,(q) n I-1(c + e) is homeomorphic to

a finite dimensional sphere and therefore is compact. Consequently W;"'( ,, q2) n W,(q) fl

I1-(c + e) is compact. It is also useful to observe at this point that the intersection

I'V0(7 1 J,) n W,,(q) n 1-1(c + e) can be made transversal in a standard way since it

represents the intersection of a compact manifold with a Fredholm, and closed manifold.

Since e < the description of W;*(Y1, 2) given in 3°b of this theorem, .hows2

V(,')n W,(q) n i-'(c + e) C VI(1,2). With C, sufficiently lage and 3(C 1 ) small, it

may be assumed that if (qi, q2, Q3) E W;Q(ql , 2) f c ", then (qi, q2) C E as defined after

(8.34) and Q, satisfies (8.36). Then as noted earlier, the flow for -2 on W.(4,1;2) n1 + 1

takes the form (8.5), i.e. splits nicely. In particular this form holds on W0(41 ,' 2 ) n

VV,,(q) n I-'(c + e). Therefore Wo ( 1 7 2 ) n W,,(q) n 1+I is the image under this flow of

the compact set W( 1 ,7 2 ) n W.(q) nl11(c+ e).
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It was shown earlier in (8.12)-(8.13) that for a trajectory in W;*('l, 2 ), the limit,

P, of (1 + I[Q3 - !(q, + q2)] 2(-)) - ' as r -- o is nonzero. Thus [Q3 - -(ql + q2)]O')

does not tend to oc along this trajectory. The same is true uniformly for all trajectories

originating in the compact set VV( 1 , 2 ) n W.(q) fl (c + e). Hence 30 of Theorem 7.2

does not hold here. Only part of 712 lies in W,,(q) due to the fact that the single critical

point occurring in Theorem 7.2 is replaced by the entire set, 1R-12, here. However as the

above remarks show, we do have transversal intersections at least for the critical points at

infinity and also for the intersection of the unstable manifold of a classical critical point

with the stable manifold of a critical point at infinity if there is no other critical value

between the two critical values considered.

In the classical framework, as in the proof of 30 of Theorem 7.2 and 50 of Theorem 8.2,

these facts together with the Morse Lemma allowed us to conclude that all intersections,

without restriction, were transversal. The retraction result then followed. In the present

situation, the Morse Lemma available for the critical points at infinity is special since we

have manifolds of critical points at infinity. We could break up these manifolds into a finite

number of points by modifying the functional, and then use the finite dimensional result.

However, this leads to new technical problems so we prefer to argue directly. The problem

is the following: since we have a whole set 7-12 of critical points at infinity, the sum of the

tangent space to IV (, 1, 2 ) and the tangent space to W °(' 1 ,72) at any of these critical

points is not direct. There is a direct sum: the sum of the tangent space to W7(q 1 , 12)

at = (71 2, 7Q3 ) and the subspace of the tangent space at 7 defined in the coordinates

(q, q2, Q3 -[Q31, [Q - 2+2]) by

(8.59) T(V,,V,)W,(l;,,7 2 ) X {o}.

In (8.59), T(-,, =)VV(T,1 , 2 ) refers to the tangent space at ( ,1,2) to W(7 1, 2 ); {O} refers

to the zero in the tangent space to W f'([0, TI, R ) with coordinates (Q3 - [Q3],

[O - L(q, + q2)1).
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Comparing (8.39) with (7.25), we should take E- here at (qj, q2) E W-(M,q 2 ), to be

T(q,,q.,T"(')Iu, 2 ) x {O} (using thc same coordinates). With the above definition of E-, E-

is invariant under the linearized flow (see (8.31)). With this modification, the statement

of Proposition 7.31 holds. After (7.38), we established (i), (ii) and (iii) inductively. Here,

due to the presence of the critical points at infinity, (ii) cannot hold and is replaced by the

inclusion:

(ii)' W(q) n f. C

C W.(q) U {W.(q') n fc I q' E Fq} U ( ) n f I W.(q)n € 7 5 }

(iii) remains the same (when generalized in order to take into account the critical points

at infinity). With this modification, (i), (ii)' and (iii) hold and their proof is nearly the same

as in the classical case. The modifications are related to the fact that (7.24) does not hold

here; i.e. there is no local fibration of W,(q) over W'(71,; 2) if W,(q) fl W;(gl,7 2 ) # 0,

due to the fact that W- (q) does not necessarily contain all of W (71 , 2) in its closure.

However, the arguments using the fibration may be replaced, for the proof of (i), (ii)' and

(iii), by the transversality, property, i.e. by Proposition 7.31.

Again using the above definition of E-, Proposition 7.64 holds in this extended frame-

work, the proof being essentially the same. This proposition provides us with a neighbor-

hood of Jr" U D' U DM+j, invariant under the decreasing flow, of the type W' U V,

where V is a neighborhood of DM+1 with a piecewise smooth boundary, intersecting W'

transversally. Wo also has a piecewise smooth boundary. W', V and V l W' are

therefore ANR's.

For later purposes, we point out that we may suppose that -Z points inwards on

W' o U V. This is obtained by modifying slightly the deformation argument of (7.66) -

(7.72). We have shown there, up to a change in notation, that we can find a vector field

v, which vanishes on 1"I UD'Moo U VM+1 and such that v points inwards on W' U V.

We were using v in order to show that -Z(q) + ev points inwards on W' U V. We can

argue differently and assume that W' U V is constructed by using the flow of -Z(q) + ev
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in (7.3S) (instead of the flow of -Z(q)), with e sufficiently small. If -Z(q) is tangent at

any point q to such a W4 U V, then v has to point outwards to Woo U V at such a q.

However, when 6 -- 0 the boundary of W' U V approaches the boundary of the similar

set for -Z(q) and v points inwards on this set. Therefore, we have a contradiction, and

-Z(q) is transverse to Wo U V along its boundary.

Using the same kind of argument as in §7, to establish that W,,(a, b) is an ENR, we

can prove that DM+i1 is an ENR. Namely, DM+1 is locally contractible for the same reason

W,(a, b) is locally contractible. Vm+i is locally compact since VM+i is a union of finite

dimensional manifolds and since DM+i is locally closed. (Indeed DM+1 C Elm+, UD'+ 1 U

I"). Sinc- -_ ' is tanent to DM+I and on al , it points inwdrd to W', W, n T,+,

is a retract of an open subset in DM+I (namely U 77(s, DM+l n W)) and therefore is
sER

also an ENR of dimension at most m. Thus we have established that V,, Wo, W1 fn V,

are ANR's and that DM+1 and M+1 n Wo are ENR's of dimension at most m.

The sets V,, W', depend on small positive parameters e e,..., e. (respectively eo, ... ,

These parameters allow us to define the balls B(x,, ej) in the proof of Proposition 7.64,

from which the set V, (and WI) is constructed. These ei and e' obey constraints of the

type:
Ei < Oi(f1, " .. ' e i - l ' E 00 ' ' '1 e - 1

0 < e< -e.

gince TV 0(7,, 7) n WM( ) = 0, Oi does not depend on ei,..., ei-1, i.e. the constraints on

6, are of the type

0 < E00 <  ?M ,'",c )

We may therefore fix e,..., e, thus obtaining the set W' and consider V, = V(ei,..., e,)

with small es's. The intersection V(e) n W, is transverse and is a piecewise smooth

manifold. If V(e) n W1 were a manifold, then when ej -* 0, j = 1,...,r, the pair

(V(e), V(e) n WI) would deform through an isotopy and we would then very easily ob-

tain a retraction by deformation onto (DM+1, DM+1 fl W'). The statement about the
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homologies of V(e) and V(e) n w °, of Theorem 8.2 would follow.

Unfortunately, v(e) n w, is only a piecewise manifold and therefore the retraction

by deformation argument is trickier (see Bahri [15]). Observe however that if 0 < C' < ej,

(ej small enough), then V(e') is a retract by deformation of V(e) and, using the fact that

the intersection is transversal, V(e') n W'o is a retract by deformation of V(6) n Wo.

Therefore, the homology of V(e) and the homology of V(e) nf W' do not depend on e,

for e small. Since D.i+I and D,+ 1 n W' are ENR's and since wV() = DM+l and
E

](V,'( ) fl VV) = l).w+l Wn W , V(e) has the homology of DM+l and V(e) n Wo has

the homology of Dm+Il n w,. (If we want to avoid the construction of the retractions

by deformation of V(E) on V(e') and V(e) n W, on V(e') l W1, we can consider Cech

homology. The argument in (5.4) of section 5 then holds in Cech homolog'. Since W'

is an ANR, Cech homology coincides with the usual homology for VV'°; the same result

holds for the other sets. Therefore, the argument may be continued as stated.)

The proof of Theorem 8.2 concludes now by showing that W has the homotopy

type of I', U D '+l We observe that (8.5) holds in a neighborhood of Z'oo and we have

the nice splitting situation already described. Therefore, in such a neighborhood (V1 for

example), we may construct W' out of a similar kind of neighborhood for the a-ociated

two-body problem and a neighborhood in W 1'2 of the set

w ERI -+ w1 < 1 }

(Here w will be Qa -3 2]).

Since the associated two-body problems satisfy the Palais-Smale condition and since

the gradient of Iij is Fredholm, the results of §7, in particular Theorem 7.2, generalize

immediately to this framework. The neighborhoods considered provided by Proposition

7.64, have the homotopy type of the union of the unstable manifolds for the critical points

of the two-body problems. This yields the result about W', except for some minor details

which we om' fc. imp!izitv.
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§9. A refined version of Theorem 1.

In this section we will prove a refined version of Theorem 1 under further assumptions

that the critical points of I are "nondegenerate". More precisely, let q be a critical point

of I and let m(q) denote its Morse index, i.e. m(q) is the number of negative eigenvalues

of I"(q). Let H(,q) denote the generalized Morse index of q, i.e. bT(q) = m(q)+ the

number of 0 eigenvalues of I"(q). By (2.24), 7'(q) - m(q) > . Observe also that the

degeneracy directions, at a critical point, satisfy a second order ODE in (R)3. Therefore

<(q) r(q) + 6.

Let 3k(A) be the kth Betti number of A and let Nk denote the number of critical

points, q, of I such that m(q) = k. Then we have

Theorem 3: Let V satisfy (VI1 ) - (V6 ). Assume that if I'(q) = 0 and m(q) k or

7T(q) > k, then 7F(q) - m(q) = e, i.e. q is a nondegenerate critical point of I modulo

translations. Then

(9.1) Nk flk(A)-12 if k>3+1.

Proof. The inequalities (9.1) can be interpreted as a version of the Morse inequalities.

However, due to the fact that critical points of the two-body functionals Iij, provide us

with critical points at infinity and since we have no control on the niuner of these critical

points, the standard proof of the Morse inequalities cannot be use( "' . The proof given

here bypasses these difficulties (and also provides a proof of the Morse inequalities in the

standard setting).

There exists M > 0 such that any homology class [c] in Hk(A) may be represented by

a chain c having support in -M . This is the case since Hk(A) is finitely generated (A is

the loop space of the fibration p : Y3 --* Y2 , see section 5, with fiber equal to the wedge of

two spheres St-i. That Hk(A) is finitely generated follows from (17]). Let

(9.2) k M = {q E A I '(q) = 0,I(q) < M, and r(q) = k}.
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As was pointed out in §4, after a perturbation argument, it may be assumed that all critical

points of I in I M are nondegenerate (modulo translations). Set

(9.3) ,Ck-1,M ={q E A I ,(q) = 0, I(q) SM, and m(q) 5 k - 1}.

Let

(9.4) Ak -- U W-Wq

qEJm

and

(9.5) Bkl = U W.(q).
qE~k-1M

Using 60 of Theorem 8.2, the chain c with support in IM representing [c] E Hk(A) may be

represented as a chain in

Hk(VV' U V,(DM+1))

with

DM+l U W.(q).
qEKM+ l

Each such chain c is spanned by simplices of dimension k. Therefore the support of c is

provided by continuous maps o, from the standard k-simplex into I M . Using a transver-

sality argument (after suitably approximating a by differentiable maps) we may assume

that the image of o,, Im ,, is transversal to W,(q) for all q E ,:M+1 where

kM+ = {qEA I'(q) =0 and I(q) <_M+1}.

Therefore

(9.6) Im a n W,(q)

for any q C Kf +' such that m(q) > k. Since the support of c does not meet the stable

manifolds of the critical points with m(q) > k, V,(VM+,) may be reduced and thus each
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chain of Hk(A) may be represented as a chain in Hk(W U V,(Ak U Bk-l)). Letting e -+ 0

and arguing as for V,(L)f+i) in §8, the chains may be represented in Hk(W UAkUBkl).

The next step in the proof of Theorem 3 is to establish:

(9.7) Nk _> Ok(A) - dim Hk(W U Bk-1)

where W will be defined shortly. Set

Zi7 = U {(qi,q,,)EAi 3 xR' qi,qj) EV(")i,Ej) and

1 <ca(qi, qj)}
1+ IQ, - 12-qi + <jI-+ 2rLq+qj] 2 - 4

(compare with (5.10)). Using Corollary 3.41 and arguments close to those of §5, it is

not difficult to extend W' to Wo, a neighborhood of C' = I u (U, z which

retracts by deformation on C'. This can be done since a(qi, qj) _ I3(CI) with a defined

in Corollary 3.41. Since 17V' n 1M+' = W', each chain of Hk(A) may be represented as

a chain of Hk(W' U Ak U Bk-.).

Next we show that

(9.8) Hk(WV' U Ak U Bk , 1'V U Bk-l) = QV.

To prove (9.8), we employ a variation of an argument of §8 which allowed us to deform

IM +- onto Wo U V,. This argument was based on the transversality of the pseudogradient

flow to W °V along its boundary and on the local fibering given by Proposition 7.24 of W,,(q)

onto W,,(q') if W,(q') l W,,(q) # ,. Observe that (Ak\kkCl) U VV' U Bk-i is invariant

under the flow (4.23). Moreover by Proposition 7.24, AA; U Bk-1 fibers locally over Bk-.

Therefore (Ak\C M') U WVO U Bk-1 has the homotopy type of WVC* U B-. Hence

(9.9) tk(V'V U Ak U Bk-1, U Bk_1)

= Hk(VW U Ak U Bk-, (Ak\AC') U )w U Bk._i).
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By excision,

(9.10) Hk(lkV0 U Ak U Bk-1, iV U Bk-i) = Hk(Ak, Ak\AICM) = QNk

as claimed above.

Since any generator of Hk(A) can be represented in Hk(W U Ak U Bk-1) via the

above remarks and this representation is injective,

(9.11) dim Hk(VV U Ak U Bk-1) _ Ok(A).

Using (9.11) together with the exact sequence for the pairs (W U Ak U Bk, W' U Bk-)

yields (9.7).

Next we will prove

(9.12) Nk > Ok(A) - dim Hk( VV).

To do so, we first show

(9.13) Hk(Bk-1) = 0

and

(9.14) Hknl(B'-. fl OW-) = 0

where B'_ 1 = Bk-l\(Bk-1 l ,'). To obtain (9.13)-(9.14), observe that Bk-1 is the

union of manifolds of dimension at most k - 1 and that by the transversality of the

intersection of Bk-1 with W' - see the proof of 60 of Theorem 8.2 - Bk-1 1 ','

is the union of manifolds of dimension at most k - 2. We will prove (9.13)-(9.14) by

induction on the number of these manifolds. Proposition 7.24 holds for the critical points

of Bk-1 and provides a local fibering of W.(x)U W,(y) over W,(y) if W,(x)n W,(y) # 0.

It follows that W,,(y) has a neighborhood V' in W,,(y) U W,(x) which (i) retracts by
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deformation on Vu(y) and such that (ii) w.(x) n v, is open in ,V,(x) and distinct from

,V,(x). Since WT(x) is a disk of dimension at most k - 1 and (ii) holds,

(9.15) Hk-(W.(x) n Vx) = 0.

Again using the fact that W,,(x) is a disk of dimension at most k - 1 and (i),

(9.16) Hk(V') - 0.

Therefore using the Mayer-Vietoris sequence applied to the excisive triad

(W.,(X) U W.(y), VZ, W, (x)), we see that

(9.17) Hk(W.(X) U W() = 0.

This result extends by induction (based on Proposition 7.24 or more properly a variant of

it involving more than two critical points) and leads to (9.13).

Now we turn to the proof of (9.14). The idea behind its proof is the same as the one

just employed, but with a shift of one in dimensions. It was pointed out in the proof of

6° of Theorem 8.2 that W' may be chosen so that the flow (4.23) is transverse to 1-VO

along its boundary. Since this flow is tangent to any W,,(y), the fibrations of Proposition

7.24 are transverse to W along its boundary, i.e. if W,(y) intersects 8W ° , W.(y) being

contained in Bk-1, and if W,(x) n W,(y) 7$ 0, W(x) also being contained in Bk-1, then

(TV.(y) U W.(z)) n &'101, fibers locally over W,,(y) n ,7)OW in the sense of Proposition 7.24

with a fiber homeomorphic to (W(x) fl W,(y)) U {y}.

Each set W,,(z) n ,V is a union of manifolds of dimension at most k - 2 since this

intersection is transversal. Using the fibrations as earlier we may construct excisive triads

((W,(x) U W,,(y)) n MW0, Vz n &W O, W,(y) n a V-)

with

(9.18) Hk,-2 (V n W.(x) n ( OVf ) = 0
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and

(9.19) Hkl(vx .a 0vV) = 0.

Therefore arguing as for (9.13),

(9.20) Hk-i(Bk. 4 n &-1) = 0.

Using the fact that the flow (4.23) is transverse to alWl, Bk-i may be retracted by

deformation onto B_ 1 . Hence (I/V U Bk-1, _l, B_ 1 ) is excisive,

(9.21) Hk(Bk'.l) = 0,

and (9.14) holds. Therefore the Mayer-Vietoris sequence implies

(9.22) d;m Hk( VV U Bk-1) < dim Hk(WV-).

Combining (9.22) and (9.7) yields (9.12).

For the final step of the proof of Theorem 3, note that by the arguments of §8 for

W', V7Vo has the same homotopy type as C'. Then by similar arguments to those used

for C1 in §5, for k > 3 + 1,

(9.23) Hk(7V) = Hk(C') = Hk(B99)
i<j

where B?7 = (Zf\int I") U W,'' and W,' was defined following (5.6). The set B9' has

the homotopy type of Se- 1 x Lij where

(9.24) £i = U(Vi,ji)Er-,j {(qj, q,) E Wu(qi, 7j) I - 4 q Jij(qi, qj)}

44U {(qi, qj) E Aij I el a(qi, qj) < Jij (qi, qj) < ell.
4 -

Using (5.6)-(5.8), rij is a retract by deformation of

(9.25) '= U W-(i,) U int P
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Therefore using the pseudogradient flow (4.23) again, £ij has the homotopy type of

(9.26) £" = U  w,

Applying Theorem 7.2 (or actually a generalization to the analogous infinite dimensional

compact and Fredhoirn framework - see e.g. (15)) we obtain that C" has the homotopy

type of A \j. Therefore BP? has the homotopy type of Aij x S t - ' and

(9.27) dim Hk(B,7) = dim Hk+t-l(Aij) + dim Hk(Aij).

As was shown in §5, A,, has the homotopy type of the loop space of St- 1 . Therefore

(9.28) dim Hk(B')< 4

and by (9.23)

(9.29) dim Hk(W'o) !5 12

for k > 3 + 1. Combining (9.12) and (9.29) yields Theorem 3.

Remark 9.30. As mentioned in the Introduction, Theorem 3 has consequences for e.g.

homogeneous potential like those yielding central configuration solutions (under (/6)).

Modulo scaling, these special solutions are generated by a compact family of solutions.

Therefore the contribution of the whole family (after scaling) to the homology groups of A

is bounded. Hence there must exist periodic solutions other than these special solutions.

The same argument may be applied to treat the multiplicity of hyperbolic or elliptic

solutions of fixed energy as mentioned in the Introduction. These results will be pursued

elsewhere.

Remark 9.31. If V is autonomous, the requirement in Theorem 3 that WF(q) - r(q) = e
cannot be satisfied. Indeed the resulting S invariance of I implies that critical points

occur in circles. Thus T(q) - m(q) > t + 1 for any critical point q of . In this setting we

can de- '2 Nk, the number of critical circles of Morse index k. Now we have:
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Corollary 9.32. Assume V satisfies (V1 ) - (V 6 ) and V is autonomous. Suppose that any

critical point q of I with m(q) < k or 7iT(q) > k satisfies M(q) - m(q) = e + 1. Then

(9.33) Vk + Nk-1 > ,k(A) - 12

for k > 3 + 1.

Proof. By perturbing I slightly, any circle of critical points of I can be broken up into

two critical points, one of Morse index k and the other of Morse index k + 1. Doing this

for each circle of critical points of I and applying the argument of Theorem 3 yields (9.33).
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